These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
238 related items for PubMed ID: 9719532
1. Steady-state concentration distribution of ampholytes in isoelectric focusing in a linear immobilized pH gradient. Stoyanov AV, Righetti PG. Electrophoresis; 1998 Jul; 19(10):1596-600. PubMed ID: 9719532 [Abstract] [Full Text] [Related]
2. Carrier ampholytes rehabilitated: gel isoelectric focusing on pH gradients visualized in real-time by automated fluorescence scanning in the HPGE-1000 apparatus. Gombocz E, Cortez E. Electrophoresis; 1999 Jun; 20(7):1365-72. PubMed ID: 10424457 [Abstract] [Full Text] [Related]
3. Sequential injection setup for capillary isoelectric focusing combined with MS detection. Páger C, Dörnyei A, Kilár F. Electrophoresis; 2011 Jul; 32(14):1875-84. PubMed ID: 21769892 [Abstract] [Full Text] [Related]
4. Conductivity properties of carrier ampholyte pH gradients in isoelectric focusing. Stoyanov AV, Das C, Fredrickson CK, Fan ZH. Electrophoresis; 2005 Jan; 26(2):473-9. PubMed ID: 15657903 [Abstract] [Full Text] [Related]
5. pH changes in Immobiline gels due to low-molecular mass ion adsorption and conditions for salt front formation during electrophoretic desorption. Stoyanov AV, Righetti PG. Electrophoresis; 1997 Jan; 18(3-4):344-8. PubMed ID: 9150912 [Abstract] [Full Text] [Related]
6. High-resolution computer simulation of the dynamics of isoelectric focusing using carrier ampholytes: focusing with concurrent electrophoretic mobilization is an isotachophoretic process. Thormann W, Mosher RA. Electrophoresis; 2006 Mar; 27(5-6):968-83. PubMed ID: 16523465 [Abstract] [Full Text] [Related]
7. Efficient algorithm for simulation of isoelectric focusing. Yoo K, Shim J, Liu J, Dutta P. Electrophoresis; 2014 Mar; 35(5):638-45. PubMed ID: 24165899 [Abstract] [Full Text] [Related]
8. Steady-state protein focusing in carrier ampholyte based isoelectric focusing: Part I-Analytical solution. Shim J, Yoo K, Dutta P. Electrophoresis; 2017 Mar; 38(5):659-666. PubMed ID: 27874208 [Abstract] [Full Text] [Related]
9. High-resolution computer simulation of the dynamics of isoelectric focusing: in quest of more realistic input parameters for carrier ampholytes. Mosher RA, Thormann W. Electrophoresis; 2008 Mar; 29(5):1036-47. PubMed ID: 18219653 [Abstract] [Full Text] [Related]
10. The adsorption of large proteins in electrofocusing on immobilized pH gradients: I. Protein specificity and dependence on Immobiline and carrier ampholyte concentrations. Fawcett JS, Chrambach A. Electrophoresis; 1988 Sep; 9(9):463-9. PubMed ID: 3243243 [Abstract] [Full Text] [Related]
11. Development of a novel ampholyte buffer for isoelectric focusing: electric charge-separation of protein samples for X-ray crystallography using free-flow isoelectric focusing. Kim SH, Miyatake H, Ueno T, Nagao T, Miki K. Acta Crystallogr D Biol Crystallogr; 2005 Jun; 61(Pt 6):799-802. PubMed ID: 15930643 [Abstract] [Full Text] [Related]
12. Investigation of the pH gradient formation and cathodic drift in microchip isoelectric focusing with imaged UV detection. Xu Z, Okabe N, Arai A, Hirokawa T. Electrophoresis; 2010 Oct; 31(21):3558-65. PubMed ID: 20925054 [Abstract] [Full Text] [Related]
13. An optimized procedure for detection of proteins on carrier ampholyte isoelectric focusing and immobilized pH gradient gels with imidazole and zinc salts: its application to the identification of isoelectric focusing separated isoforms by in-gel proteolysis and mass spectrometry analysis. Castellanos-Serra L, Vallin A, Proenza W, Le Caer JP, Rossier J. Electrophoresis; 2001 May; 22(9):1677-85. PubMed ID: 11425223 [Abstract] [Full Text] [Related]
14. Effects of ampholyte concentration on protein behavior in on-chip isoelectric focusing. Shim J, Dutta P, Ivory CF. Electrophoresis; 2008 Mar; 29(5):1026-35. PubMed ID: 18257108 [Abstract] [Full Text] [Related]
15. Effects of ampholyte dissociation constants on protein separation in on-chip isoelectric focusing. Shim J, Dutta P, Ivory CF. J Nanosci Nanotechnol; 2008 Jul; 8(7):3719-28. PubMed ID: 19051929 [Abstract] [Full Text] [Related]
16. Fast preparation of monolithic immobilized pH gradient column by photopolymerization and photografting techniques for isoelectric focusing separation of proteins. Liang Y, Zhu G, Wang T, Zhang X, Liang Z, Zhang L, Zhang Y. Electrophoresis; 2011 Oct; 32(20):2911-4. PubMed ID: 21948237 [Abstract] [Full Text] [Related]
17. Peak identification in capillary isoelectric focusing using the concept of relative peak position as determined by two isoelectric point markers. Wu J, Huang T. Electrophoresis; 2006 Sep; 27(18):3584-90. PubMed ID: 16927345 [Abstract] [Full Text] [Related]
18. High-resolution computer simulation of the dynamics of isoelectric focusing using carrier ampholytes: the post-separation stabilizing phase revisited. Mosher RA, Thormann W. Electrophoresis; 2002 Jun; 23(12):1803-14. PubMed ID: 12116123 [Abstract] [Full Text] [Related]
19. Human alpha-1-antitrypsin subtyping by hybrid isoelectric focusing in miniaturized polyacrylamide gel. Alonso A. Electrophoresis; 1989 Jul; 10(7):513-9. PubMed ID: 2789133 [Abstract] [Full Text] [Related]
20. Dynamics of protein isoelectric focusing in immobilized pH gradient gels. Stoyanov AV, Righetti PG. Electrophoresis; 1996 Aug; 17(8):1313-8. PubMed ID: 8874056 [Abstract] [Full Text] [Related] Page: [Next] [New Search]