These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


906 related items for PubMed ID: 9724541

  • 21. Signal transduction in bacteria: CheW forms a reversible complex with the protein kinase CheA.
    Gegner JA, Dahlquist FW.
    Proc Natl Acad Sci U S A; 1991 Feb 01; 88(3):750-4. PubMed ID: 1992467
    [Abstract] [Full Text] [Related]

  • 22. The response regulators CheB and CheY exhibit competitive binding to the kinase CheA.
    Li J, Swanson RV, Simon MI, Weis RM.
    Biochemistry; 1995 Nov 14; 34(45):14626-36. PubMed ID: 7578071
    [Abstract] [Full Text] [Related]

  • 23. Mutational analysis of the P1 phosphorylation domain in Escherichia coli CheA, the signaling kinase for chemotaxis.
    Nishiyama S, Garzón A, Parkinson JS.
    J Bacteriol; 2014 Jan 14; 196(2):257-64. PubMed ID: 24163342
    [Abstract] [Full Text] [Related]

  • 24. Rapid phosphotransfer to CheY from a CheA protein lacking the CheY-binding domain.
    Stewart RC, Jahreis K, Parkinson JS.
    Biochemistry; 2000 Oct 31; 39(43):13157-65. PubMed ID: 11052668
    [Abstract] [Full Text] [Related]

  • 25. Intermolecular complementation of the kinase activity of CheA.
    Swanson RV, Bourret RB, Simon MI.
    Mol Microbiol; 1993 May 31; 8(3):435-41. PubMed ID: 8326858
    [Abstract] [Full Text] [Related]

  • 26. Mechanism of CheA protein kinase activation in receptor signaling complexes.
    Levit MN, Liu Y, Stock JB.
    Biochemistry; 1999 May 18; 38(20):6651-8. PubMed ID: 10350484
    [Abstract] [Full Text] [Related]

  • 27. Adaptation mechanism of the aspartate receptor: electrostatics of the adaptation subdomain play a key role in modulating kinase activity.
    Starrett DJ, Falke JJ.
    Biochemistry; 2005 Feb 08; 44(5):1550-60. PubMed ID: 15683239
    [Abstract] [Full Text] [Related]

  • 28. Binding of TNP-ATP and TNP-ADP to the non-catalytic sites of Escherichia coli F1-ATPase.
    Weber J, Senior AE.
    FEBS Lett; 1997 Jul 21; 412(1):169-72. PubMed ID: 9257714
    [Abstract] [Full Text] [Related]

  • 29. Constitutively signaling fragments of Tsr, the Escherichia coli serine chemoreceptor.
    Ames P, Parkinson JS.
    J Bacteriol; 1994 Oct 21; 176(20):6340-8. PubMed ID: 7929006
    [Abstract] [Full Text] [Related]

  • 30. Trinitrophenyl-ATP and -ADP bind to a single nucleotide site on isolated beta-subunit of Escherichia coli F1-ATPase. In vitro assembly of F1-subunits requires occupancy of the nucleotide-binding site on beta-subunit by nucleoside triphosphate.
    Rao R, Al-Shawi MK, Senior AE.
    J Biol Chem; 1988 Apr 25; 263(12):5569-73. PubMed ID: 2895769
    [Abstract] [Full Text] [Related]

  • 31. Conserved glycine residues in the cytoplasmic domain of the aspartate receptor play essential roles in kinase coupling and on-off switching.
    Coleman MD, Bass RB, Mehan RS, Falke JJ.
    Biochemistry; 2005 May 31; 44(21):7687-95. PubMed ID: 15909983
    [Abstract] [Full Text] [Related]

  • 32. The carboxy-terminal portion of the CheA kinase mediates regulation of autophosphorylation by transducer and CheW.
    Bourret RB, Davagnino J, Simon MI.
    J Bacteriol; 1993 Apr 31; 175(7):2097-101. PubMed ID: 8384620
    [Abstract] [Full Text] [Related]

  • 33. Expression of CheA fragments which define domains encoding kinase, phosphotransfer, and CheY binding activities.
    Swanson RV, Schuster SC, Simon MI.
    Biochemistry; 1993 Aug 03; 32(30):7623-9. PubMed ID: 8347572
    [Abstract] [Full Text] [Related]

  • 34. Coupling the phosphotransferase system and the methyl-accepting chemotaxis protein-dependent chemotaxis signaling pathways of Escherichia coli.
    Lux R, Jahreis K, Bettenbrock K, Parkinson JS, Lengeler JW.
    Proc Natl Acad Sci U S A; 1995 Dec 05; 92(25):11583-7. PubMed ID: 8524808
    [Abstract] [Full Text] [Related]

  • 35. Structure and dynamics of a CheY-binding domain of the chemotaxis kinase CheA determined by nuclear magnetic resonance spectroscopy.
    McEvoy MM, Muhandiram DR, Kay LE, Dahlquist FW.
    Biochemistry; 1996 May 07; 35(18):5633-40. PubMed ID: 8639521
    [Abstract] [Full Text] [Related]

  • 36. Kinetics of ATP and TNP-ATP binding to the active site of CheA from Thermotoga maritima.
    Eaton AK, Stewart RC.
    Biochemistry; 2010 Jul 13; 49(27):5799-809. PubMed ID: 20565117
    [Abstract] [Full Text] [Related]

  • 37. The dynamics of protein phosphorylation in bacterial chemotaxis.
    Borkovich KA, Simon MI.
    Cell; 1990 Dec 21; 63(6):1339-48. PubMed ID: 2261645
    [Abstract] [Full Text] [Related]

  • 38. Chemotaxis in Rhodobacter sphaeroides requires an atypical histidine protein kinase.
    Porter SL, Armitage JP.
    J Biol Chem; 2004 Dec 24; 279(52):54573-80. PubMed ID: 15485885
    [Abstract] [Full Text] [Related]

  • 39. Interactions of nucleotide cofactors with the Escherichia coli replication factor DnaC protein.
    Galletto R, Rajendran S, Bujalowski W.
    Biochemistry; 2000 Oct 24; 39(42):12959-69. PubMed ID: 11041861
    [Abstract] [Full Text] [Related]

  • 40. Identification of an anchor residue for CheA-CheY interactions in the chemotaxis system of Escherichia coli.
    Thakor H, Nicholas S, Porter IM, Hand N, Stewart RC.
    J Bacteriol; 2011 Aug 24; 193(15):3894-903. PubMed ID: 21642453
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 46.