These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


209 related items for PubMed ID: 9726896

  • 21. Bacterial populations occuring in a trichloroethylene-contaminated aquifer during methane injection.
    Baker P, Futamata H, Harayama S, Watanabe K.
    Environ Microbiol; 2001 Mar; 3(3):187-93. PubMed ID: 11321535
    [Abstract] [Full Text] [Related]

  • 22.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 23.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 24. Mixed pollutant degradation by Methylosinus trichosporium OB3b expressing either soluble or particulate methane monooxygenase: can the tortoise beat the hare?
    Lee SW, Keeney DR, Lim DH, Dispirito AA, Semrau JD.
    Appl Environ Microbiol; 2006 Dec; 72(12):7503-9. PubMed ID: 17012599
    [Abstract] [Full Text] [Related]

  • 25. Bioremediation of trichloroethylene and cis-1,2-dichloroethylene-contaminated groundwater by methane-utilizing bacteria.
    Arai K, Tsubone T, Takechi T, Inoue T.
    J Vet Med Sci; 1999 Jul; 61(7):861-3. PubMed ID: 10458116
    [Abstract] [Full Text] [Related]

  • 26. [Growth of Methylosinus trichosporium OB3b on methane and poly-beta-hydroxybutyrate biosynthesis].
    Doronina NV, Ezhov VA, Trotsenko IuA.
    Prikl Biokhim Mikrobiol; 2008 Jul; 44(2):202-6. PubMed ID: 18669263
    [Abstract] [Full Text] [Related]

  • 27. The effect of the dissolved oxygen concentration and anabolic limitations on the behaviour of Rhizobium ORS571 in chemostat cultures.
    de Vries W, Stam H, Duys JG, Ligtenberg AJ, Simons LH, Stouthamer AH.
    Antonie Van Leeuwenhoek; 1986 Jul; 52(1):85-96. PubMed ID: 3524445
    [Abstract] [Full Text] [Related]

  • 28. Demonstration of efficient trichloroethylene biodegradation in a hollow-fiber membrane bioreactor.
    Pressman JG, Georgiou G, Speitel GE.
    Biotechnol Bioeng; 1999 Mar 20; 62(6):681-92. PubMed ID: 9951524
    [Abstract] [Full Text] [Related]

  • 29. Hydrogenase activity in nitrogen-fixing methane-oxidizing bacteria.
    Bont JA.
    Antonie Van Leeuwenhoek; 1976 Mar 20; 42(3):255-9. PubMed ID: 825038
    [Abstract] [Full Text] [Related]

  • 30. Batch cultivation of Methylosinus trichosporium OB3b: V. Characterization of poly-beta-hydroxybutyrate production under methane-dependent growth conditions.
    Shah NN, Hanna ML, Taylor RT.
    Biotechnol Bioeng; 1996 Jan 20; 49(2):161-71. PubMed ID: 18623566
    [Abstract] [Full Text] [Related]

  • 31. [The biodegradation of trichloroethylene by a methanotrophic bacterium].
    Shen R, Li S.
    Wei Sheng Wu Xue Bao; 1998 Feb 20; 38(1):63-9. PubMed ID: 12549391
    [Abstract] [Full Text] [Related]

  • 32. Methylosinus trichosporium OB3b bioaugmentation unleashes polyhydroxybutyrate-accumulating potential in waste-activated sludge.
    Eam H, Ko D, Lee C, Myung J.
    Microb Cell Fact; 2024 May 31; 23(1):160. PubMed ID: 38822346
    [Abstract] [Full Text] [Related]

  • 33. Transformation yields of chlorinated ethenes by a methanotrophic mixed culture expressing particulate methane monooxygenase.
    Anderson JE, McCarty PL.
    Appl Environ Microbiol; 1997 Feb 31; 63(2):687-93. PubMed ID: 9023946
    [Abstract] [Full Text] [Related]

  • 34. Phenotypic characterization of copper-resistant mutants of Methylosinus trichosporium OB3b.
    Fitch MW, Graham DW, Arnold RG, Agarwal SK, Phelps P, Speitel GE, Georgiou G.
    Appl Environ Microbiol; 1993 Sep 31; 59(9):2771-6. PubMed ID: 8215352
    [Abstract] [Full Text] [Related]

  • 35. Degradation kinetics of chlorinated aliphatic hydrocarbons by methane oxidizers naturally-associated with wetland plant roots.
    Powell CL, Goltz MN, Agrawal A.
    J Contam Hydrol; 2014 Dec 01; 170():68-75. PubMed ID: 25444117
    [Abstract] [Full Text] [Related]

  • 36. Soluble methane monooxygenase component B gene probe for identification of methanotrophs that rapidly degrade trichloroethylene.
    Tsien HC, Hanson RS.
    Appl Environ Microbiol; 1992 Mar 01; 58(3):953-60. PubMed ID: 1349468
    [Abstract] [Full Text] [Related]

  • 37. Haloalkene oxidation by the soluble methane monooxygenase from Methylosinus trichosporium OB3b: mechanistic and environmental implications.
    Fox BG, Borneman JG, Wackett LP, Lipscomb JD.
    Biochemistry; 1990 Jul 10; 29(27):6419-27. PubMed ID: 2207083
    [Abstract] [Full Text] [Related]

  • 38. Product toxicity and cometabolic competitive inhibition modeling of chloroform and trichloroethylene transformation by methanotrophic resting cells.
    Alvarez-Cohen L, McCarty PL.
    Appl Environ Microbiol; 1991 Apr 10; 57(4):1031-7. PubMed ID: 1905516
    [Abstract] [Full Text] [Related]

  • 39. Identification of intermediates of in vivo trichloroethylene oxidation by the membrane-associated methane monooxygenase.
    Lontoh S, Zahn JA, DiSpirito AA, Semrau JD.
    FEMS Microbiol Lett; 2000 May 01; 186(1):109-13. PubMed ID: 10779721
    [Abstract] [Full Text] [Related]

  • 40. Microbial transformations of selenite by methane-oxidizing bacteria.
    Eswayah AS, Smith TJ, Scheinost AC, Hondow N, Gardiner PHE.
    Appl Microbiol Biotechnol; 2017 Sep 01; 101(17):6713-6724. PubMed ID: 28646447
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 11.