These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


150 related items for PubMed ID: 9727367

  • 1. Nitric oxide release as an essential mitigating step in tubuloglomerular feedback: observations during intrarenal nitric oxide clamp.
    Turkstra E, Braam B, Koomans HA.
    J Am Soc Nephrol; 1998 Sep; 9(9):1596-603. PubMed ID: 9727367
    [Abstract] [Full Text] [Related]

  • 2. Relative roles of nitric oxide, prostanoids and angiotensin II in the regulation of canine glomerular hemodynamics. A micropuncture study.
    Kramer HJ, Horacek V, Bäcker A, Vaneckova I, Heller J.
    Kidney Blood Press Res; 2004 Sep; 27(1):10-7. PubMed ID: 14583658
    [Abstract] [Full Text] [Related]

  • 3. Neuronal nitric oxide synthase inhibition sensitizes the tubuloglomerular feedback mechanism after volume expansion.
    Brown R, Ollerstam A, Persson AE.
    Kidney Int; 2004 Apr; 65(4):1349-56. PubMed ID: 15086474
    [Abstract] [Full Text] [Related]

  • 4. Impaired effect by NO synthase inhibition on tubuloglomerular feedback in rats after chronic renal denervation.
    Thorup C, Kurkus J, Morsing P, Ollerstam A, Persson AE.
    Acta Physiol Scand; 2000 Jan; 168(1):89-93. PubMed ID: 10691784
    [Abstract] [Full Text] [Related]

  • 5. Role of endogenous endothelin and nitric oxide in tubuloglomerular feedback.
    Kawabata M, Han WH, Ise T, Kobayashi K, Takabatake T.
    Kidney Int Suppl; 1996 Jun; 55():S135-7. PubMed ID: 8743535
    [Abstract] [Full Text] [Related]

  • 6. Effects of isoprostane on tubuloglomerular feedback: roles of TP receptors, NOS, and salt intake.
    Welch WJ.
    Am J Physiol Renal Physiol; 2005 Apr; 288(4):F757-62. PubMed ID: 15613618
    [Abstract] [Full Text] [Related]

  • 7. Verapamil abolishes the preglomerular response to ANG II during intrarenal nitric oxide synthesis inhibition.
    Schnackenberg CG, Granger JP.
    Am J Physiol; 1997 May; 272(5 Pt 2):R1670-6. PubMed ID: 9176363
    [Abstract] [Full Text] [Related]

  • 8. Cyclooxygenase 2 inhibition suppresses tubuloglomerular feedback: roles of thromboxane receptors and nitric oxide.
    Araujo M, Welch WJ.
    Am J Physiol Renal Physiol; 2009 Apr; 296(4):F790-4. PubMed ID: 19144694
    [Abstract] [Full Text] [Related]

  • 9. Adenosine A2A receptor activation attenuates tubuloglomerular feedback responses by stimulation of endothelial nitric oxide synthase.
    Carlström M, Wilcox CS, Welch WJ.
    Am J Physiol Renal Physiol; 2011 Feb; 300(2):F457-64. PubMed ID: 21106859
    [Abstract] [Full Text] [Related]

  • 10. Nitric oxide antagonizes the actions of angiotensin II to enhance tubuloglomerular feedback responsiveness.
    Braam B, Koomans HA.
    Kidney Int; 1995 Nov; 48(5):1406-11. PubMed ID: 8544396
    [Abstract] [Full Text] [Related]

  • 11. The angiotensin receptor antagonist 2-ethoxy-1-[[2'-(1H- tetrazol-5-yl) biphenyl-4-yl]methyl]-1H-benzimidazole-7-carboxylic acid (CV11974) attenuates the tubuloglomerular feedback response during NO synthase blockade in rats.
    Kawata T, Hashimoto S, Koike T.
    J Pharmacol Exp Ther; 1996 May; 277(2):572-7. PubMed ID: 8627533
    [Abstract] [Full Text] [Related]

  • 12. Role of nitric oxide in tubuloglomerular feedback: effects of dietary salt.
    Welch WJ, Wilcox CS.
    Clin Exp Pharmacol Physiol; 1997 Aug; 24(8):582-6. PubMed ID: 9269531
    [Abstract] [Full Text] [Related]

  • 13. Increased availability of nitric oxide leads to enhanced nitric oxide dependency of tubuloglomerular feedback in the contralateral kidney of rats with 2-kidney, 1-clip Goldblatt hypertension.
    Turkstra E, Boer P, Braam B, Koomans HA.
    Hypertension; 1999 Oct; 34(4 Pt 1):679-84. PubMed ID: 10523346
    [Abstract] [Full Text] [Related]

  • 14. Role of Nitric oxide in the renal and systemic vasodilatory responses to platelet-activating factor in the rat, in vivo.
    Handa RK, Strandhoy JW, Handa SE.
    Kidney Blood Press Res; 2003 Oct; 26(3):165-75. PubMed ID: 12886044
    [Abstract] [Full Text] [Related]

  • 15. A new mechanism for the sex differences in angiotensin II-induced hypertension: the role of macula densa NOS1β-mediated tubuloglomerular feedback.
    Zhang J, Qu L, Wei J, Jiang S, Xu L, Wang L, Cheng F, Jiang K, Buggs J, Liu R.
    Am J Physiol Renal Physiol; 2020 Nov 01; 319(5):F908-F919. PubMed ID: 33044868
    [Abstract] [Full Text] [Related]

  • 16. Temporal adaptation of tubuloglomerular feedback: effects of COX-2.
    Deng A, Wead LM, Blantz RC.
    Kidney Int; 2004 Dec 01; 66(6):2348-53. PubMed ID: 15569325
    [Abstract] [Full Text] [Related]

  • 17. TGF and nitric oxide: effects of salt intake and salt-sensitive hypertension.
    Wilcox CS, Welch WJ.
    Kidney Int Suppl; 1996 Jun 01; 55():S9-13. PubMed ID: 8743503
    [Abstract] [Full Text] [Related]

  • 18. Inhibition of ROMK blocks macula densa tubuloglomerular feedback yet causes renal vasoconstriction in anesthetized rats.
    Araujo M, Welch WJ, Zhou X, Sullivan K, Walsh S, Pasternak A, Wilcox CS.
    Am J Physiol Renal Physiol; 2017 Jun 01; 312(6):F1120-F1127. PubMed ID: 28228405
    [Abstract] [Full Text] [Related]

  • 19. Angiotensin II type 2 receptors and nitric oxide sustain oxygenation in the clipped kidney of early Goldblatt hypertensive rats.
    Palm F, Connors SG, Mendonca M, Welch WJ, Wilcox CS.
    Hypertension; 2008 Feb 01; 51(2):345-51. PubMed ID: 18158356
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.