These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


196 related items for PubMed ID: 9729613

  • 1. Non-pore lining amino acid side chains influence anion selectivity of the human CFTR Cl- channel expressed in mammalian cell lines.
    Linsdell P, Zheng SX, Hanrahan JW.
    J Physiol; 1998 Oct 01; 512 ( Pt 1)(Pt 1):1-16. PubMed ID: 9729613
    [Abstract] [Full Text] [Related]

  • 2. Molecular determinants of anion selectivity in the cystic fibrosis transmembrane conductance regulator chloride channel pore.
    Linsdell P, Evagelidis A, Hanrahan JW.
    Biophys J; 2000 Jun 01; 78(6):2973-82. PubMed ID: 10827976
    [Abstract] [Full Text] [Related]

  • 3. Asymmetric structure of the cystic fibrosis transmembrane conductance regulator chloride channel pore suggested by mutagenesis of the twelfth transmembrane region.
    Gupta J, Evagelidis A, Hanrahan JW, Linsdell P.
    Biochemistry; 2001 Jun 05; 40(22):6620-7. PubMed ID: 11380256
    [Abstract] [Full Text] [Related]

  • 4. Cytoplasmic loop three of cystic fibrosis transmembrane conductance regulator contributes to regulation of chloride channel activity.
    Seibert FS, Linsdell P, Loo TW, Hanrahan JW, Riordan JR, Clarke DM.
    J Biol Chem; 1996 Nov 01; 271(44):27493-9. PubMed ID: 8910333
    [Abstract] [Full Text] [Related]

  • 5. Location of a common inhibitor binding site in the cytoplasmic vestibule of the cystic fibrosis transmembrane conductance regulator chloride channel pore.
    Linsdell P.
    J Biol Chem; 2005 Mar 11; 280(10):8945-50. PubMed ID: 15634668
    [Abstract] [Full Text] [Related]

  • 6. Relationship between anion binding and anion permeability revealed by mutagenesis within the cystic fibrosis transmembrane conductance regulator chloride channel pore.
    Linsdell P.
    J Physiol; 2001 Feb 15; 531(Pt 1):51-66. PubMed ID: 11179391
    [Abstract] [Full Text] [Related]

  • 7. Extent of the selectivity filter conferred by the sixth transmembrane region in the CFTR chloride channel pore.
    Gupta J, Lindsell P.
    Mol Membr Biol; 2003 Feb 15; 20(1):45-52. PubMed ID: 12745925
    [Abstract] [Full Text] [Related]

  • 8. Positive charges at the intracellular mouth of the pore regulate anion conduction in the CFTR chloride channel.
    Aubin CN, Linsdell P.
    J Gen Physiol; 2006 Nov 15; 128(5):535-45. PubMed ID: 17043152
    [Abstract] [Full Text] [Related]

  • 9. Disease-associated mutations in the fourth cytoplasmic loop of cystic fibrosis transmembrane conductance regulator compromise biosynthetic processing and chloride channel activity.
    Seibert FS, Linsdell P, Loo TW, Hanrahan JW, Clarke DM, Riordan JR.
    J Biol Chem; 1996 Jun 21; 271(25):15139-45. PubMed ID: 8662892
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Cystic fibrosis transmembrane conductance regulator (CFTR) anion binding as a probe of the pore.
    Mansoura MK, Smith SS, Choi AD, Richards NW, Strong TV, Drumm ML, Collins FS, Dawson DC.
    Biophys J; 1998 Mar 21; 74(3):1320-32. PubMed ID: 9512029
    [Abstract] [Full Text] [Related]

  • 12. Function of Xenopus cystic fibrosis transmembrane conductance regulator (CFTR) Cl channels and use of human-Xenopus chimeras to investigate the pore properties of CFTR.
    Price MP, Ishihara H, Sheppard DN, Welsh MJ.
    J Biol Chem; 1996 Oct 11; 271(41):25184-91. PubMed ID: 8810276
    [Abstract] [Full Text] [Related]

  • 13. The pore architecture of the cystic fibrosis transmembrane conductance regulator channel revealed by co-mutation in pore-forming transmembrane regions.
    Qian F, Liu L, Liu Z, Lu C.
    Physiol Res; 2016 Jul 18; 65(3):505-15. PubMed ID: 27070741
    [Abstract] [Full Text] [Related]

  • 14. Contribution of proline residues in the membrane-spanning domains of cystic fibrosis transmembrane conductance regulator to chloride channel function.
    Sheppard DN, Travis SM, Ishihara H, Welsh MJ.
    J Biol Chem; 1996 Jun 21; 271(25):14995-5001. PubMed ID: 8663008
    [Abstract] [Full Text] [Related]

  • 15. Two positively charged amino acid side-chains in the inner vestibule of the CFTR channel pore play analogous roles in controlling anion binding and anion conductance.
    Linsdell P, Irving CL, Cowley EA, El Hiani Y.
    Cell Mol Life Sci; 2021 Jun 21; 78(12):5213-5223. PubMed ID: 34023918
    [Abstract] [Full Text] [Related]

  • 16. Maximization of the rate of chloride conduction in the CFTR channel pore by ion-ion interactions.
    Gong X, Linsdell P.
    Arch Biochem Biophys; 2004 Jun 01; 426(1):78-82. PubMed ID: 15130785
    [Abstract] [Full Text] [Related]

  • 17. Contribution of a leucine residue in the first transmembrane segment to the selectivity filter region in the CFTR chloride channel.
    Negoda A, El Hiani Y, Cowley EA, Linsdell P.
    Biochim Biophys Acta Biomembr; 2017 May 01; 1859(5):1049-1058. PubMed ID: 28235470
    [Abstract] [Full Text] [Related]

  • 18. Chloride channel and chloride conductance regulator domains of CFTR, the cystic fibrosis transmembrane conductance regulator.
    Schwiebert EM, Morales MM, Devidas S, Egan ME, Guggino WB.
    Proc Natl Acad Sci U S A; 1998 Mar 03; 95(5):2674-9. PubMed ID: 9482946
    [Abstract] [Full Text] [Related]

  • 19. Identification of positive charges situated at the outer mouth of the CFTR chloride channel pore.
    Zhou JJ, Fatehi M, Linsdell P.
    Pflugers Arch; 2008 Nov 03; 457(2):351-60. PubMed ID: 18449561
    [Abstract] [Full Text] [Related]

  • 20. Novel residues lining the CFTR chloride channel pore identified by functional modification of introduced cysteines.
    Fatehi M, Linsdell P.
    J Membr Biol; 2009 Apr 03; 228(3):151-64. PubMed ID: 19381710
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.