These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


196 related items for PubMed ID: 9729613

  • 21. Disulphonic stilbene block of cystic fibrosis transmembrane conductance regulator Cl- channels expressed in a mammalian cell line and its regulation by a critical pore residue.
    Linsdell P, Hanrahan JW.
    J Physiol; 1996 Nov 01; 496 ( Pt 3)(Pt 3):687-93. PubMed ID: 8930836
    [Abstract] [Full Text] [Related]

  • 22. Molecular determinants of Au(CN)(2)(-) binding and permeability within the cystic fibrosis transmembrane conductance regulator Cl(-) channel pore.
    Gong X, Burbridge SM, Cowley EA, Linsdell P.
    J Physiol; 2002 Apr 01; 540(Pt 1):39-47. PubMed ID: 11927667
    [Abstract] [Full Text] [Related]

  • 23. Anion conductance selectivity mechanism of the CFTR chloride channel.
    Linsdell P.
    Biochim Biophys Acta; 2016 Apr 01; 1858(4):740-7. PubMed ID: 26779604
    [Abstract] [Full Text] [Related]

  • 24. Location of a permeant anion binding site in the cystic fibrosis transmembrane conductance regulator chloride channel pore.
    Rubaiy HN, Linsdell P.
    J Physiol Sci; 2015 May 01; 65(3):233-41. PubMed ID: 25673337
    [Abstract] [Full Text] [Related]

  • 25. The two halves of CFTR form a dual-pore ion channel.
    Yue H, Devidas S, Guggino WB.
    J Biol Chem; 2000 Apr 07; 275(14):10030-4. PubMed ID: 10744680
    [Abstract] [Full Text] [Related]

  • 26. Regulation of conductance by the number of fixed positive charges in the intracellular vestibule of the CFTR chloride channel pore.
    Zhou JJ, Li MS, Qi J, Linsdell P.
    J Gen Physiol; 2010 Mar 07; 135(3):229-45. PubMed ID: 20142516
    [Abstract] [Full Text] [Related]

  • 27. Intracellular loop between transmembrane segments IV and V of cystic fibrosis transmembrane conductance regulator is involved in regulation of chloride channel conductance state.
    Xie J, Drumm ML, Ma J, Davis PB.
    J Biol Chem; 1995 Nov 24; 270(47):28084-91. PubMed ID: 7499295
    [Abstract] [Full Text] [Related]

  • 28. Functional organization of cytoplasmic portals controlling access to the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel pore.
    Li MS, Cowley EA, El Hiani Y, Linsdell P.
    J Biol Chem; 2018 Apr 13; 293(15):5649-5658. PubMed ID: 29475947
    [Abstract] [Full Text] [Related]

  • 29. Mutations at arginine 352 alter the pore architecture of CFTR.
    Cui G, Zhang ZR, O'Brien AR, Song B, McCarty NA.
    J Membr Biol; 2008 Mar 13; 222(2):91-106. PubMed ID: 18421494
    [Abstract] [Full Text] [Related]

  • 30. Direct comparison of the functional roles played by different transmembrane regions in the cystic fibrosis transmembrane conductance regulator chloride channel pore.
    Ge N, Muise CN, Gong X, Linsdell P.
    J Biol Chem; 2004 Dec 31; 279(53):55283-9. PubMed ID: 15504721
    [Abstract] [Full Text] [Related]

  • 31. Arg352 is a major determinant of charge selectivity in the cystic fibrosis transmembrane conductance regulator chloride channel.
    Guinamard R, Akabas MH.
    Biochemistry; 1999 Apr 27; 38(17):5528-37. PubMed ID: 10220340
    [Abstract] [Full Text] [Related]

  • 32. Functional differences in pore properties between wild-type and cysteine-less forms of the CFTR chloride channel.
    Holstead RG, Li MS, Linsdell P.
    J Membr Biol; 2011 Oct 27; 243(1-3):15-23. PubMed ID: 21796426
    [Abstract] [Full Text] [Related]

  • 33. Role of Hydrophobic Amino-Acid Side-Chains in the Narrow Selectivity Filter of the CFTR Chloride Channel Pore in Conductance and Selectivity.
    Linsdell P.
    J Membr Biol; 2023 Dec 27; 256(4-6):433-442. PubMed ID: 37823914
    [Abstract] [Full Text] [Related]

  • 34. Contribution of the eighth transmembrane segment to the function of the CFTR chloride channel pore.
    Negoda A, Hogan MS, Cowley EA, Linsdell P.
    Cell Mol Life Sci; 2019 Jun 27; 76(12):2411-2423. PubMed ID: 30758641
    [Abstract] [Full Text] [Related]

  • 35. Interaction between permeation and gating in a putative pore domain mutant in the cystic fibrosis transmembrane conductance regulator.
    Zhang ZR, McDonough SI, McCarty NA.
    Biophys J; 2000 Jul 27; 79(1):298-313. PubMed ID: 10866956
    [Abstract] [Full Text] [Related]

  • 36. The Fifth Transmembrane Segment of Cystic Fibrosis Transmembrane Conductance Regulator Contributes to Its Anion Permeation Pathway.
    Zhang J, Hwang TC.
    Biochemistry; 2015 Jun 23; 54(24):3839-50. PubMed ID: 26024338
    [Abstract] [Full Text] [Related]

  • 37. Halide permeation in wild-type and mutant cystic fibrosis transmembrane conductance regulator chloride channels.
    Tabcharani JA, Linsdell P, Hanrahan JW.
    J Gen Physiol; 1997 Oct 23; 110(4):341-54. PubMed ID: 9379167
    [Abstract] [Full Text] [Related]

  • 38. Permeability of wild-type and mutant cystic fibrosis transmembrane conductance regulator chloride channels to polyatomic anions.
    Linsdell P, Tabcharani JA, Rommens JM, Hou YX, Chang XB, Tsui LC, Riordan JR, Hanrahan JW.
    J Gen Physiol; 1997 Oct 23; 110(4):355-64. PubMed ID: 9379168
    [Abstract] [Full Text] [Related]

  • 39. Identification of a region of strong discrimination in the pore of CFTR.
    McCarty NA, Zhang ZR.
    Am J Physiol Lung Cell Mol Physiol; 2001 Oct 23; 281(4):L852-67. PubMed ID: 11557589
    [Abstract] [Full Text] [Related]

  • 40. Functional Architecture of the Cytoplasmic Entrance to the Cystic Fibrosis Transmembrane Conductance Regulator Chloride Channel Pore.
    El Hiani Y, Linsdell P.
    J Biol Chem; 2015 Jun 19; 290(25):15855-15865. PubMed ID: 25944907
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 10.