These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


93 related items for PubMed ID: 9733223

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Computational study of the effect of geometric and flow parameters on the steady flow field at the rabbit aorto-celiac bifurcation.
    Cheer AY, Dwyer HA, Barakat AI, Sy E, Bice M.
    Biorheology; 1998; 35(6):415-35. PubMed ID: 10656050
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Relation between near-wall residence times of monocytes and early lesion growth in the rabbit aorto-celiac junction.
    Longest PW, Kleinstreuer C, Truskey GA, Buchanan JR.
    Ann Biomed Eng; 2003 Jan; 31(1):53-64. PubMed ID: 12572656
    [Abstract] [Full Text] [Related]

  • 7. Comparison of steady and pulsatile flow in a double branching arterial model.
    Lutz RJ, Hsu L, Menawat A, Zrubek J, Edwards K.
    J Biomech; 1983 Jan; 16(9):753-66. PubMed ID: 6643546
    [Abstract] [Full Text] [Related]

  • 8. Flow patterns and preferred sites of atherosclerotic lesions in the human aorta - II. Abdominal aorta.
    Endo S, Goldsmith HL, Karino T.
    Biorheology; 2014 Jan; 51(4-5):257-74. PubMed ID: 25281597
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Computational model of blood flow in the aorto-coronary bypass graft.
    Sankaranarayanan M, Chua LP, Ghista DN, Tan YS.
    Biomed Eng Online; 2005 Mar 04; 4():14. PubMed ID: 15745458
    [Abstract] [Full Text] [Related]

  • 12. Numerical simulation of steady flow fields in a model of abdominal aorta with its peripheral branches.
    Lee D, Chen JY.
    J Biomech; 2002 Aug 04; 35(8):1115-22. PubMed ID: 12126670
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Effect of Reynolds number and flow division on patterns of haemodynamic wall shear stress near branch points in the descending thoracic aorta.
    Kazakidi A, Sherwin SJ, Weinberg PD.
    J R Soc Interface; 2009 Jun 06; 6(35):539-48. PubMed ID: 18812285
    [Abstract] [Full Text] [Related]

  • 15. Flow patterns at the major T-junctions of the dog descending aorta.
    Karino T, Motomiya M, Goldsmith HL.
    J Biomech; 1990 Jun 06; 23(6):537-48. PubMed ID: 2341417
    [Abstract] [Full Text] [Related]

  • 16. Focal increases in vascular cell adhesion molecule-1 and intimal macrophages at atherosclerosis-susceptible sites in the rabbit aorta after short-term cholesterol feeding.
    Truskey GA, Herrmann RA, Kait J, Barber KM.
    Arterioscler Thromb Vasc Biol; 1999 Feb 06; 19(2):393-401. PubMed ID: 9974424
    [Abstract] [Full Text] [Related]

  • 17. [Effects of wall shear stress on the morphology and permeability of endothelial cells in stenotic rabbit abdominal aorta].
    Wu Y, Deng X, Zhen X, Wang K.
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2005 Apr 06; 22(2):225-9. PubMed ID: 15884523
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 5.