These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
510 related items for PubMed ID: 9740661
1. Disruption of primary mesenchyme cell patterning by misregulated ectodermal expression of SpMsx in sea urchin embryos. Tan H, Ransick A, Wu H, Dobias S, Liu YH, Maxson R. Dev Biol; 1998 Sep 15; 201(2):230-46. PubMed ID: 9740661 [Abstract] [Full Text] [Related]
2. Localized VEGF signaling from ectoderm to mesenchyme cells controls morphogenesis of the sea urchin embryo skeleton. Duloquin L, Lhomond G, Gache C. Development; 2007 Jun 15; 134(12):2293-302. PubMed ID: 17507391 [Abstract] [Full Text] [Related]
3. FGF signals guide migration of mesenchymal cells, control skeletal morphogenesis [corrected] and regulate gastrulation during sea urchin development. Röttinger E, Saudemont A, Duboc V, Besnardeau L, McClay D, Lepage T. Development; 2008 Jan 15; 135(2):353-65. PubMed ID: 18077587 [Abstract] [Full Text] [Related]
4. Short-range cell-cell signals control ectodermal patterning in the oral region of the sea urchin embryo. Hardin J, Armstrong N. Dev Biol; 1997 Feb 01; 182(1):134-49. PubMed ID: 9073456 [Abstract] [Full Text] [Related]
5. The evolution of Msx gene function: expression and regulation of a sea urchin Msx class homeobox gene. Dobias SL, Ma L, Wu H, Bell JR, Maxson R. Mech Dev; 1997 Jan 01; 61(1-2):37-48. PubMed ID: 9076676 [Abstract] [Full Text] [Related]
6. The role of Brachyury (T) during gastrulation movements in the sea urchin Lytechinus variegatus. Gross JM, McClay DR. Dev Biol; 2001 Nov 01; 239(1):132-47. PubMed ID: 11784024 [Abstract] [Full Text] [Related]
7. Gene regulatory networks and developmental plasticity in the early sea urchin embryo: alternative deployment of the skeletogenic gene regulatory network. Ettensohn CA, Kitazawa C, Cheers MS, Leonard JD, Sharma T. Development; 2007 Sep 01; 134(17):3077-87. PubMed ID: 17670786 [Abstract] [Full Text] [Related]
8. Effects of BMP-7 on mouse tooth mesenchyme and chick mandibular mesenchyme. Wang YH, Rutherford B, Upholt WB, Mina M. Dev Dyn; 1999 Dec 01; 216(4-5):320-35. PubMed ID: 10633853 [Abstract] [Full Text] [Related]
9. A conserved role for the nodal signaling pathway in the establishment of dorso-ventral and left-right axes in deuterostomes. Duboc V, Lepage T. J Exp Zool B Mol Dev Evol; 2008 Jan 15; 310(1):41-53. PubMed ID: 16838294 [Abstract] [Full Text] [Related]
10. Nuclear beta-catenin-dependent Wnt8 signaling in vegetal cells of the early sea urchin embryo regulates gastrulation and differentiation of endoderm and mesodermal cell lineages. Wikramanayake AH, Peterson R, Chen J, Huang L, Bince JM, McClay DR, Klein WH. Genesis; 2004 Jul 15; 39(3):194-205. PubMed ID: 15282746 [Abstract] [Full Text] [Related]
11. Pattern formation during gastrulation in the sea urchin embryo. McClay DR, Armstrong NA, Hardin J. Dev Suppl; 1992 Jul 15; ():33-41. PubMed ID: 1299366 [Abstract] [Full Text] [Related]
12. The dynamics and regulation of mesenchymal cell fusion in the sea urchin embryo. Hodor PG, Ettensohn CA. Dev Biol; 1998 Jul 01; 199(1):111-24. PubMed ID: 9676196 [Abstract] [Full Text] [Related]
13. Skeletal pattern is specified autonomously by the primary mesenchyme cells in sea urchin embryos. Armstrong N, McClay DR. Dev Biol; 1994 Apr 01; 162(2):329-38. PubMed ID: 8150198 [Abstract] [Full Text] [Related]
14. Nodal and BMP2/4 pattern the mesoderm and endoderm during development of the sea urchin embryo. Duboc V, Lapraz F, Saudemont A, Bessodes N, Mekpoh F, Haillot E, Quirin M, Lepage T. Development; 2010 Jan 01; 137(2):223-35. PubMed ID: 20040489 [Abstract] [Full Text] [Related]
15. Nodal/activin signaling establishes oral-aboral polarity in the early sea urchin embryo. Flowers VL, Courteau GR, Poustka AJ, Weng W, Venuti JM. Dev Dyn; 2004 Dec 01; 231(4):727-40. PubMed ID: 15517584 [Abstract] [Full Text] [Related]