These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


303 related items for PubMed ID: 9744943

  • 21. Bilateral pedaling asymmetry during a simulated 40-km cycling time-trial.
    Carpes FP, Rossato M, Faria IE, Bolli Mota C.
    J Sports Med Phys Fitness; 2007 Mar; 47(1):51-7. PubMed ID: 17369798
    [Abstract] [Full Text] [Related]

  • 22. Muscle contributions to specific biomechanical functions do not change in forward versus backward pedaling.
    Neptune RR, Kautz SA, Zajac FE.
    J Biomech; 2000 Feb; 33(2):155-64. PubMed ID: 10653028
    [Abstract] [Full Text] [Related]

  • 23. Influence of pedaling rate on muscle mechanical energy in low power recumbent pedaling using forward dynamic simulations.
    Hakansson NA, Hull ML.
    IEEE Trans Neural Syst Rehabil Eng; 2007 Dec; 15(4):509-16. PubMed ID: 18198708
    [Abstract] [Full Text] [Related]

  • 24. Neuromuscular activation pattern of lower extremity muscles during pedaling in cyclists with single amputation of leg and with two legs: a case study.
    Watanabe K, Yamaguchi Y, Fukuda W, Nakazawa S, Kenjo T, Nishiyama T.
    BMC Res Notes; 2020 Jun 22; 13(1):299. PubMed ID: 32571389
    [Abstract] [Full Text] [Related]

  • 25. Does leg preference affect muscle activation and efficiency?
    Carpes FP, Diefenthaeler F, Bini RR, Stefanyshyn D, Faria IE, Mota CB.
    J Electromyogr Kinesiol; 2010 Dec 22; 20(6):1230-6. PubMed ID: 20729097
    [Abstract] [Full Text] [Related]

  • 26.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 27. Impaired interlimb coordination is related to asymmetries during pedaling after stroke.
    Cleland BT, Gelting T, Arand B, Struhar J, Schindler-Ivens S.
    Clin Neurophysiol; 2019 Sep 22; 130(9):1474-1487. PubMed ID: 31288158
    [Abstract] [Full Text] [Related]

  • 28. Human neuronal interlimb coordination during split-belt locomotion.
    Dietz V, Zijlstra W, Duysens J.
    Exp Brain Res; 1994 Sep 22; 101(3):513-20. PubMed ID: 7851518
    [Abstract] [Full Text] [Related]

  • 29.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 30.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 31.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 32.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 33. Limited interlimb transfer of locomotor adaptations to a velocity-dependent force field during unipedal walking.
    Houldin A, Chua R, Carpenter MG, Lam T.
    J Neurophysiol; 2012 Aug 01; 108(3):943-52. PubMed ID: 22592310
    [Abstract] [Full Text] [Related]

  • 34.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 35. Impairments in prehension produced by early postnatal sensory motor cortex activity blockade.
    Martin JH, Donarummo L, Hacking A.
    J Neurophysiol; 2000 Feb 01; 83(2):895-906. PubMed ID: 10669503
    [Abstract] [Full Text] [Related]

  • 36.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 37.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 38.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 39. Direction-dependent phasing of locomotor muscle activity is altered post-stroke.
    Schindler-Ivens S, Brown DA, Brooke JD.
    J Neurophysiol; 2004 Oct 01; 92(4):2207-16. PubMed ID: 15175363
    [Abstract] [Full Text] [Related]

  • 40.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 16.