These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


339 related items for PubMed ID: 9749597

  • 21. Age-related differences in human corticospinal excitability during simple reaction time.
    Levin O, Cuypers K, Netz Y, Thijs H, Nuttin B, Helsen WF, Meesen RL.
    Neurosci Lett; 2011 Jan 03; 487(1):53-7. PubMed ID: 20932881
    [Abstract] [Full Text] [Related]

  • 22. Event-related desynchronization in reaction time paradigms: a comparison with event-related potentials and corticospinal excitability.
    Leocani L, Toro C, Zhuang P, Gerloff C, Hallett M.
    Clin Neurophysiol; 2001 May 03; 112(5):923-30. PubMed ID: 11336910
    [Abstract] [Full Text] [Related]

  • 23. Long-lasting increase in corticospinal excitability after 1800 pulses of subthreshold 5 Hz repetitive TMS to the primary motor cortex.
    Peinemann A, Reimer B, Löer C, Quartarone A, Münchau A, Conrad B, Siebner HR.
    Clin Neurophysiol; 2004 Jul 03; 115(7):1519-26. PubMed ID: 15203053
    [Abstract] [Full Text] [Related]

  • 24. Bilateral changes in excitability of sensorimotor cortices during unilateral movement: combined electroencephalographic and transcranial magnetic stimulation study.
    Kicić D, Lioumis P, Ilmoniemi RJ, Nikulin VV.
    Neuroscience; 2008 Apr 09; 152(4):1119-29. PubMed ID: 18353562
    [Abstract] [Full Text] [Related]

  • 25. The time course of changes in motor cortex excitability associated with voluntary movement.
    Chen R, Hallett M.
    Can J Neurol Sci; 1999 Aug 09; 26(3):163-9. PubMed ID: 10451737
    [Abstract] [Full Text] [Related]

  • 26. An initial transient-state and reliable measures of corticospinal excitability in TMS studies.
    Schmidt S, Cichy RM, Kraft A, Brocke J, Irlbacher K, Brandt SA.
    Clin Neurophysiol; 2009 May 09; 120(5):987-93. PubMed ID: 19359215
    [Abstract] [Full Text] [Related]

  • 27. Suppression of corticospinal excitability during negative motor imagery.
    Sohn YH, Dang N, Hallett M.
    J Neurophysiol; 2003 Oct 09; 90(4):2303-9. PubMed ID: 14534268
    [Abstract] [Full Text] [Related]

  • 28. MEP latency shift after implantation of deep brain stimulation systems in the subthalamic nucleus in patients with advanced Parkinson's disease.
    Hidding U, Bäumer T, Siebner HR, Demiralay C, Buhmann C, Weyh T, Moll C, Hamel W, Münchau A.
    Mov Disord; 2006 Sep 09; 21(9):1471-6. PubMed ID: 16703590
    [Abstract] [Full Text] [Related]

  • 29. Changes in corticospinal excitability and the direction of evoked movements during motor preparation: a TMS study.
    van Elswijk G, Schot WD, Stegeman DF, Overeem S.
    BMC Neurosci; 2008 Jun 17; 9():51. PubMed ID: 18559096
    [Abstract] [Full Text] [Related]

  • 30. Corticospinal excitability during painful self-stimulation in humans: a transcranial magnetic stimulation study.
    Fadiga L, Craighero L, Dri G, Facchin P, Destro MF, Porro CA.
    Neurosci Lett; 2004 May 06; 361(1-3):250-3. PubMed ID: 15135940
    [Abstract] [Full Text] [Related]

  • 31. Combining observation and imagery of an action enhances human corticospinal excitability.
    Sakamoto M, Muraoka T, Mizuguchi N, Kanosue K.
    Neurosci Res; 2009 Sep 06; 65(1):23-7. PubMed ID: 19463869
    [Abstract] [Full Text] [Related]

  • 32. Corticospinal excitability accompanying ballistic wrist movements in primary dystonia.
    MacKinnon CD, Velickovic M, Drafta C, Hesquijarosa A, Brin MF.
    Mov Disord; 2004 Mar 06; 19(3):273-84. PubMed ID: 15022181
    [Abstract] [Full Text] [Related]

  • 33. The influence of hand posture on corticospinal excitability during motor imagery: a transcranial magnetic stimulation study.
    Vargas CD, Olivier E, Craighero L, Fadiga L, Duhamel JR, Sirigu A.
    Cereb Cortex; 2004 Nov 06; 14(11):1200-6. PubMed ID: 15142965
    [Abstract] [Full Text] [Related]

  • 34. On-line flexibility of the cognitive tuning of corticospinal excitability: a TMS study in human gait.
    Camus M, Pailhous J, Bonnard M.
    Brain Res; 2006 Mar 03; 1076(1):144-9. PubMed ID: 16473341
    [Abstract] [Full Text] [Related]

  • 35. Dynamic changes in corticospinal control of precision grip during wrist movements.
    Gagné M, Schneider C.
    Brain Res; 2007 Aug 20; 1164():32-43. PubMed ID: 17632089
    [Abstract] [Full Text] [Related]

  • 36. Cognitive tuning of corticospinal excitability during human gait: adaptation to the phase.
    Camus M, Pailhous J, Bonnard M.
    Eur J Neurosci; 2004 Aug 20; 20(4):1101-7. PubMed ID: 15305879
    [Abstract] [Full Text] [Related]

  • 37. Repetitive paired-pulse TMS at I-wave periodicity markedly increases corticospinal excitability: a new technique for modulating synaptic plasticity.
    Thickbroom GW, Byrnes ML, Edwards DJ, Mastaglia FL.
    Clin Neurophysiol; 2006 Jan 20; 117(1):61-6. PubMed ID: 16326137
    [Abstract] [Full Text] [Related]

  • 38. The silent period threshold as a measure of corticospinal inhibition.
    Lo YL, Fook-Chong S.
    J Clin Neurophysiol; 2005 Jun 20; 22(3):176-9. PubMed ID: 15933489
    [Abstract] [Full Text] [Related]

  • 39. Temporal facilitation prior to voluntary muscle relaxation.
    Sugawara K, Tanabe S, Higashi T, Tsurumi T, Kasai T.
    Int J Neurosci; 2009 Jun 20; 119(3):442-52. PubMed ID: 19116847
    [Abstract] [Full Text] [Related]

  • 40. Synchronization of parietal and premotor areas during preparation and execution of praxis hand movements.
    Wheaton LA, Nolte G, Bohlhalter S, Fridman E, Hallett M.
    Clin Neurophysiol; 2005 Jun 20; 116(6):1382-90. PubMed ID: 15978500
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 17.