These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


318 related items for PubMed ID: 9751918

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. Molecular phylogeny and divergence dates for Australasian elapids and sea snakes (hydrophiinae): evidence from seven genes for rapid evolutionary radiations.
    Sanders KL, Lee MS, Leys R, Foster R, Keogh JS.
    J Evol Biol; 2008 May; 21(3):682-95. PubMed ID: 18384538
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Uncovering cryptic diversity in Aspidomorphus (Serpentes: Elapidae): evidence from mitochondrial and nuclear markers.
    Metzger GA, Kraus F, Allison A, Parkinson CL.
    Mol Phylogenet Evol; 2010 Feb; 54(2):405-16. PubMed ID: 19647085
    [Abstract] [Full Text] [Related]

  • 5. Plio-pleistocene diversification and connectivity between mainland and Tasmanian populations of Australian snakes (Drysdalia, Elapidae, Serpentes).
    Dubey S, Keogh JS, Shine R.
    Mol Phylogenet Evol; 2010 Sep; 56(3):1119-25. PubMed ID: 20430104
    [Abstract] [Full Text] [Related]

  • 6. Phylogenetic relationships of three representative sea krait species (genus Laticauda; elapidae; serpentes) based on 13 mitochondrial genes.
    Kim IH, Park J, Suk HY, Bae HG, Min MS, Tsai TS, Park D.
    Mitochondrial DNA A DNA Mapp Seq Anal; 2018 Jul; 29(5):772-777. PubMed ID: 28903620
    [Abstract] [Full Text] [Related]

  • 7. Phylogenetic signal in the COI, 16S, and 28S genes for inferring relationships among genera of Microgastrinae (Hymenoptera; Braconidae): evidence of a high diversification rate in this group of parasitoids.
    Mardulyn P, Whitfield JB.
    Mol Phylogenet Evol; 1999 Aug; 12(3):282-94. PubMed ID: 10413623
    [Abstract] [Full Text] [Related]

  • 8. Phylogenetic relationships of African killifishes in the genera Aphyosemion and Fundulopanchax inferred from mitochondrial DNA sequences.
    Murphy WJ, Collier GE.
    Mol Phylogenet Evol; 1999 Apr; 11(3):351-60. PubMed ID: 10196077
    [Abstract] [Full Text] [Related]

  • 9. Snakes across the Strait: trans-Torresian phylogeographic relationships in three genera of Australasian snakes (Serpentes: Elapidae: Acanthophis, Oxyuranus, and Pseudechis).
    Wüster W, Dumbrell AJ, Hay C, Pook CE, Williams DJ, Fry BG.
    Mol Phylogenet Evol; 2005 Jan; 34(1):1-14. PubMed ID: 15579378
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Phylogenetic relationships of North American garter snakes (Thamnophis) based on four mitochondrial genes: how much DNA sequence is enough?
    de Queiroz A, Lawson R, Lemos-Espinal JA.
    Mol Phylogenet Evol; 2002 Feb; 22(2):315-29. PubMed ID: 11820851
    [Abstract] [Full Text] [Related]

  • 12. Molecular phylogeny and phylogeography of the Australian Diplodactylus stenodactylus (Gekkota; Reptilia) species-group based on mitochondrial and nuclear genes reveals an ancient split between Pilbara and non-Pilbara D. stenodactylus.
    Pepper M, Doughty P, Keogh JS.
    Mol Phylogenet Evol; 2006 Dec; 41(3):539-55. PubMed ID: 16843684
    [Abstract] [Full Text] [Related]

  • 13. Multilocus phylogeny and recent rapid radiation of the viviparous sea snakes (Elapidae: Hydrophiinae).
    Sanders KL, Lee MS, Mumpuni, Bertozzi T, Rasmussen AR.
    Mol Phylogenet Evol; 2013 Mar; 66(3):575-91. PubMed ID: 23026811
    [Abstract] [Full Text] [Related]

  • 14. Phylogenetic relationships of some common Indo-Pacific snappers (Perciformes: Lutjanidae) based on mitochondrial DNA sequences, with comments on the taxonomic position of the Caesioninae.
    Miller TL, Cribb TH.
    Mol Phylogenet Evol; 2007 Jul; 44(1):450-60. PubMed ID: 17188002
    [Abstract] [Full Text] [Related]

  • 15. A molecular phylogenetic analysis of the Octocorallia (Cnidaria: Anthozoa) based on mitochondrial protein-coding sequences.
    McFadden CS, France SC, Sánchez JA, Alderslade P.
    Mol Phylogenet Evol; 2006 Dec; 41(3):513-27. PubMed ID: 16876445
    [Abstract] [Full Text] [Related]

  • 16. Uncoupling ecological innovation and speciation in sea snakes (Elapidae, Hydrophiinae, Hydrophiini).
    Sanders KL, Mumpuni, Lee MS.
    J Evol Biol; 2010 Dec; 23(12):2685-93. PubMed ID: 21077974
    [Abstract] [Full Text] [Related]

  • 17. Phylogenetic relationships among the major lineages of the birds-of-paradise (Paradisaeidae) using mitochondrial DNA gene sequences.
    Nunn GB, Cracraft J.
    Mol Phylogenet Evol; 1996 Jun; 5(3):445-59. PubMed ID: 8744759
    [Abstract] [Full Text] [Related]

  • 18. Phylogenetic relationships and evolutionary history of the reef fish family Labridae.
    Westneat MW, Alfaro ME.
    Mol Phylogenet Evol; 2005 Aug; 36(2):370-90. PubMed ID: 15955516
    [Abstract] [Full Text] [Related]

  • 19. Clinical implications of convergent procoagulant toxicity and differential antivenom efficacy in Australian elapid snake venoms.
    Zdenek CN, den Brouw BO, Dashevsky D, Gloria A, Youngman NJ, Watson E, Green P, Hay C, Dunstan N, Allen L, Fry BG.
    Toxicol Lett; 2019 Nov; 316():171-182. PubMed ID: 31442586
    [Abstract] [Full Text] [Related]

  • 20. Molecular phylogeny of the Australian frog genera Crinia, Geocrinia, and allied taxa (Anura: Myobatrachidae).
    Read K, Keogh JS, Scott IA, Roberts JD, Doughty P.
    Mol Phylogenet Evol; 2001 Nov; 21(2):294-308. PubMed ID: 11697923
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 16.