These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


239 related items for PubMed ID: 9760260

  • 1. Ceruloplasmin copper induces oxidant damage by a redox process utilizing cell-derived superoxide as reductant.
    Mukhopadhyay CK, Fox PL.
    Biochemistry; 1998 Oct 06; 37(40):14222-9. PubMed ID: 9760260
    [Abstract] [Full Text] [Related]

  • 2. A critical overview of the chemistry of copper-dependent low density lipoprotein oxidation: roles of lipid hydroperoxides, alpha-tocopherol, thiols, and ceruloplasmin.
    Burkitt MJ.
    Arch Biochem Biophys; 2001 Oct 01; 394(1):117-35. PubMed ID: 11566034
    [Abstract] [Full Text] [Related]

  • 3. Ceruloplasmin enhances smooth muscle cell- and endothelial cell-mediated low density lipoprotein oxidation by a superoxide-dependent mechanism.
    Mukhopadhyay CK, Ehrenwald E, Fox PL.
    J Biol Chem; 1996 Jun 21; 271(25):14773-8. PubMed ID: 8663020
    [Abstract] [Full Text] [Related]

  • 4. Ceruloplasmin and cardiovascular disease.
    Fox PL, Mazumder B, Ehrenwald E, Mukhopadhyay CK.
    Free Radic Biol Med; 2000 Jun 15; 28(12):1735-44. PubMed ID: 10946215
    [Abstract] [Full Text] [Related]

  • 5. The influence of platelet-smooth muscle cell interaction on the oxidative modification of low-density lipoprotein.
    Alexander JJ, Lewis I.
    J Surg Res; 2002 Mar 15; 103(1):41-6. PubMed ID: 11855916
    [Abstract] [Full Text] [Related]

  • 6. Identification of the prooxidant site of human ceruloplasmin: a model for oxidative damage by copper bound to protein surfaces.
    Mukhopadhyay CK, Mazumder B, Lindley PF, Fox PL.
    Proc Natl Acad Sci U S A; 1997 Oct 14; 94(21):11546-51. PubMed ID: 9326646
    [Abstract] [Full Text] [Related]

  • 7. Homocysteine promotes the LDL oxidase activity of ceruloplasmin.
    Exner M, Hermann M, Hofbauer R, Hartmann B, Kapiotis S, Gmeiner B.
    FEBS Lett; 2002 Nov 20; 531(3):402-6. PubMed ID: 12435583
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Transmembrane calcium flux regulates LDL oxidation by arterial smooth muscle cells.
    Wells KE, Miguel R, Alexander JJ.
    J Surg Res; 1997 Feb 01; 67(2):126-31. PubMed ID: 9073558
    [Abstract] [Full Text] [Related]

  • 10. Direct transfer of copper from metallothionein to superoxide dismutase: a possible mechanism for differential supply of Cu to SOD and ceruloplasmin in LEC rats.
    Suzuki KT, Kuroda T.
    Res Commun Mol Pathol Pharmacol; 1994 Oct 01; 86(1):15-23. PubMed ID: 7850252
    [Abstract] [Full Text] [Related]

  • 11. Superoxide-mediated modification of low density lipoprotein by arterial smooth muscle cells.
    Heinecke JW, Baker L, Rosen H, Chait A.
    J Clin Invest; 1986 Mar 01; 77(3):757-61. PubMed ID: 3005364
    [Abstract] [Full Text] [Related]

  • 12. [Dismutation of superoxide radicals by ceruloplasmin--details of the mechanism].
    Vasil'ev VB, Kachurin AM, Soroka NV.
    Biokhimiia; 1988 Dec 01; 53(12):2051-8. PubMed ID: 2855027
    [Abstract] [Full Text] [Related]

  • 13. Pioglitazone inhibits LOX-1 expression in human coronary artery endothelial cells by reducing intracellular superoxide radical generation.
    Mehta JL, Hu B, Chen J, Li D.
    Arterioscler Thromb Vasc Biol; 2003 Dec 01; 23(12):2203-8. PubMed ID: 12958047
    [Abstract] [Full Text] [Related]

  • 14. Overexpression of EC-SOD suppresses endothelial-cell-mediated LDL oxidation.
    Takatsu H, Tasaki H, Kim HN, Ueda S, Tsutsui M, Yamashita K, Toyokawa T, Morimoto Y, Nakashima Y, Adachi T.
    Biochem Biophys Res Commun; 2001 Jul 06; 285(1):84-91. PubMed ID: 11437376
    [Abstract] [Full Text] [Related]

  • 15. Alpha-tocopherol modulates human umbilical vein endothelial cell expression of Cu/Zn superoxide dismutase and catalase and lipid peroxidation.
    Nakamura YK, Omaye ST.
    Nutr Res; 2008 Oct 06; 28(10):671-80. PubMed ID: 19083475
    [Abstract] [Full Text] [Related]

  • 16. Role of copper and ceruloplasmin in oxidative mutagenesis induced by the glutathione-gamma-glutamyl transpeptidase system and by other thiols.
    Stark AA, Glass GA.
    Environ Mol Mutagen; 1997 Oct 06; 29(1):63-72. PubMed ID: 9020309
    [Abstract] [Full Text] [Related]

  • 17. Protective effect of human HDL against Cu(2+)-induced oxidation of astrocytes.
    Ferretti G, Bacchetti T, Moroni C, Vignini A, Curatola G.
    J Trace Elem Med Biol; 2003 Oct 06; 17 Suppl 1():25-30. PubMed ID: 14650625
    [Abstract] [Full Text] [Related]

  • 18. Regulation of ceruloplasmin in human hepatic cells by redox active copper: identification of a novel AP-1 site in the ceruloplasmin gene.
    Das D, Tapryal N, Goswami SK, Fox PL, Mukhopadhyay CK.
    Biochem J; 2007 Feb 15; 402(1):135-41. PubMed ID: 17032174
    [Abstract] [Full Text] [Related]

  • 19. Nitric oxide inhibits prooxidant actions of uric acid during copper-mediated LDL oxidation.
    Sanguinetti SM, Batthyány C, Trostchansky A, Botti H, López GI, Wikinski RL, Rubbo H, Schreier LE.
    Arch Biochem Biophys; 2004 Mar 15; 423(2):302-8. PubMed ID: 15001394
    [Abstract] [Full Text] [Related]

  • 20. Cell-mediated LDL oxidation: the impact of transition metals and transferrin.
    Van Campenhout A, Heytens E, Van Campenhout C, Lagrou AR, Manuel-y-Keenoy B.
    Biochem Biophys Res Commun; 2005 Dec 23; 338(3):1617-24. PubMed ID: 16288727
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 12.