These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


124 related items for PubMed ID: 9764483

  • 21. Ram horn peptone as a source of citric acid production by Aspergillus niger, with a process.
    Kurbanoglu EB, Kurbanoglu NI.
    J Ind Microbiol Biotechnol; 2004 Jul; 31(6):289-94. PubMed ID: 15248090
    [Abstract] [Full Text] [Related]

  • 22. Conversion of cassava wastes for biofertilizer production using phosphate solubilizing fungi.
    Ogbo FC.
    Bioresour Technol; 2010 Jun; 101(11):4120-4. PubMed ID: 20138509
    [Abstract] [Full Text] [Related]

  • 23. Hesperidinase encapsulation towards hesperitin production targeting improved bioavailability.
    Furtado AF, Nunes MA, Ribeiro MH.
    J Mol Recognit; 2012 Nov; 25(11):595-603. PubMed ID: 23108619
    [Abstract] [Full Text] [Related]

  • 24. A novel immobilised design for the production of the heterologous protein lysozyme by a genetically engineered Aspergillus niger strain.
    Parra R, Aldred D, Magan N.
    Appl Microbiol Biotechnol; 2005 May; 67(3):336-44. PubMed ID: 15480630
    [Abstract] [Full Text] [Related]

  • 25. Coexpression of the pyrroloquinoline quinone and glucose dehydrogenase genes from Serratia marcescens CTM 50650 conferred high mineral phosphate-solubilizing ability to Escherichia coli.
    Ben Farhat M, Fourati A, Chouayekh H.
    Appl Biochem Biotechnol; 2013 Aug; 170(7):1738-50. PubMed ID: 23737304
    [Abstract] [Full Text] [Related]

  • 26. Biosolubilization of rock phosphate by three stress-tolerant fungal strains.
    Xiao C, Chi R, Li X, Xia M, Xia Z.
    Appl Biochem Biotechnol; 2011 Sep; 165(2):719-27. PubMed ID: 21625871
    [Abstract] [Full Text] [Related]

  • 27.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 28. Immobilization of Escherichia coli novablue gamma-glutamyltranspeptidase in Ca-alginate-kappa-carrageenan beads.
    Hung CP, Lo HF, Hsu WH, Chen SC, Lin LL.
    Appl Biochem Biotechnol; 2008 Aug; 150(2):157-70. PubMed ID: 18483700
    [Abstract] [Full Text] [Related]

  • 29.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 30.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 31. Biosolubilization of poorly soluble rock phosphates by Aspergillus tubingensis and Aspergillus niger.
    Reddy MS, Kumar S, Babita K, Reddy MS.
    Bioresour Technol; 2002 Sep; 84(2):187-9. PubMed ID: 12139336
    [Abstract] [Full Text] [Related]

  • 32.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 33.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 34.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 35.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 36.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 37. Production of alkaline protease with immobilized cells of Bacillus subtilis PE-11 in various matrices by entrapment technique.
    Adinarayana K, Jyothi B, Ellaiah P.
    AAPS PharmSciTech; 2005 Oct 19; 6(3):E391-7. PubMed ID: 16353996
    [Abstract] [Full Text] [Related]

  • 38.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 39. Phosphate solubilization and promotion of maize growth by Penicillium oxalicum P4 and Aspergillus niger P85 in a calcareous soil.
    Yin Z, Shi F, Jiang H, Roberts DP, Chen S, Fan B.
    Can J Microbiol; 2015 Dec 19; 61(12):913-23. PubMed ID: 26469739
    [Abstract] [Full Text] [Related]

  • 40. Fungal rock phosphate solubilization using sugarcane bagasse.
    Mendes GO, Dias CS, Silva IR, Júnior JI, Pereira OL, Costa MD.
    World J Microbiol Biotechnol; 2013 Jan 19; 29(1):43-50. PubMed ID: 22927013
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 7.