These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


165 related items for PubMed ID: 9767192

  • 1. Kinetics of all stages of electron transfer in nitrogenase in the presence of a photodonor.
    Syrtsova LA, Nadtochenko VA, Timofeeva EA.
    Biochemistry (Mosc); 1998 Aug; 63(8):1007-13. PubMed ID: 9767192
    [Abstract] [Full Text] [Related]

  • 2. Kinetics of elementary steps of electron transfer in nitrogenase in the presence of a photodonor.
    Syrtsova LA, Nadtochenko VA, Denisov NN, Timofeeva EA, Shkondina NI, Gak VY.
    Biochemistry (Mosc); 2000 Oct; 65(10):1145-52. PubMed ID: 11092957
    [Abstract] [Full Text] [Related]

  • 3. Xanthene dyes as photochemical donors for the nitrogenase reaction.
    Druzhinin SY, Syrtsova LA, Denisov NN, Shkondina NI, Gak VY.
    Biochemistry (Mosc); 1998 Aug; 63(8):996-1006. PubMed ID: 9767191
    [Abstract] [Full Text] [Related]

  • 4. Evidence for electron transfer from the nitrogenase iron protein to the molybdenum-iron protein without MgATP hydrolysis: characterization of a tight protein-protein complex.
    Lanzilotta WN, Fisher K, Seefeldt LC.
    Biochemistry; 1996 Jun 04; 35(22):7188-96. PubMed ID: 8679547
    [Abstract] [Full Text] [Related]

  • 5. Electron transfer in nitrogenase analyzed by Marcus theory: evidence for gating by MgATP.
    Lanzilotta WN, Parker VD, Seefeldt LC.
    Biochemistry; 1998 Jan 06; 37(1):399-407. PubMed ID: 9425061
    [Abstract] [Full Text] [Related]

  • 6. Effects on substrate reduction of substitution of histidine-195 by glutamine in the alpha-subunit of the MoFe protein of Azotobacter vinelandii nitrogenase.
    Dilworth MJ, Fisher K, Kim CH, Newton WE.
    Biochemistry; 1998 Dec 15; 37(50):17495-505. PubMed ID: 9860864
    [Abstract] [Full Text] [Related]

  • 7. Nitrogenase of Azotobacter vinelandii: kinetic analysis of the Fe protein redox cycle.
    Duyvis MG, Wassink H, Haaker H.
    Biochemistry; 1998 Dec 15; 37(50):17345-54. PubMed ID: 9860849
    [Abstract] [Full Text] [Related]

  • 8. Formation of a tight 1:1 complex of Clostridium pasteurianum Fe protein-Azotobacter vinelandii MoFe protein: evidence for long-range interactions between the Fe protein binding sites during catalytic hydrogen evolution.
    Clarke TA, Maritano S, Eady RR.
    Biochemistry; 2000 Sep 19; 39(37):11434-40. PubMed ID: 10985789
    [Abstract] [Full Text] [Related]

  • 9. Steady-state kinetic studies of dithionite utilization, component protein interaction, and the formation of an oxidized iron protein intermediate during Azotobacter vinelandii nitrogenase catalysis.
    Johnson JL, Tolley AM, Erickson JA, Watt GD.
    Biochemistry; 1996 Sep 03; 35(35):11336-42. PubMed ID: 8784188
    [Abstract] [Full Text] [Related]

  • 10. Electron-transfer studies involving flavodoxin and a natural redox partner, the iron protein of nitrogenase. Conformational constraints on protein-protein interactions and the kinetics of electron transfer within the protein complex.
    Thorneley RN, Deistung J.
    Biochem J; 1988 Jul 15; 253(2):587-95. PubMed ID: 3140782
    [Abstract] [Full Text] [Related]

  • 11. Reductant-independent ATP hydrolysis catalyzed by homologous nitrogenase proteins from Azotobacter vinelandii and heterologous crosses with Clostridium pasteuranium.
    Larsen C, Christensen S, Watt GD.
    Arch Biochem Biophys; 1995 Nov 10; 323(2):215-22. PubMed ID: 7487080
    [Abstract] [Full Text] [Related]

  • 12. The concentration of cellular nitrogenase proteins in Azotobacter vinelandii whole cells as determined by activity measurements and electron paramagnetic resonance spectroscopy.
    Jacobs D, Mitchell D, Watt GD.
    Arch Biochem Biophys; 1995 Dec 20; 324(2):317-24. PubMed ID: 8554323
    [Abstract] [Full Text] [Related]

  • 13. Evidence That the Pi Release Event Is the Rate-Limiting Step in the Nitrogenase Catalytic Cycle.
    Yang ZY, Ledbetter R, Shaw S, Pence N, Tokmina-Lukaszewska M, Eilers B, Guo Q, Pokhrel N, Cash VL, Dean DR, Antony E, Bothner B, Peters JW, Seefeldt LC.
    Biochemistry; 2016 Jul 05; 55(26):3625-35. PubMed ID: 27295169
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Docking of nitrogenase iron- and molybdenum-iron proteins for electron transfer and MgATP hydrolysis: the role of arginine 140 and lysine 143 of the Azotobacter vinelandii iron protein.
    Seefeldt LC.
    Protein Sci; 1994 Nov 05; 3(11):2073-81. PubMed ID: 7703853
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Conformations generated during turnover of the Azotobacter vinelandii nitrogenase MoFe protein and their relationship to physiological function.
    Fisher K, Lowe DJ, Tavares P, Pereira AS, Huynh BH, Edmondson D, Newton WE.
    J Inorg Biochem; 2007 Nov 05; 101(11-12):1649-56. PubMed ID: 17845818
    [Abstract] [Full Text] [Related]

  • 19. [Role of adenosine triphosphatase on nitrogenase function].
    Likhtenshtein GI, Panteleeva NS, Skvortsevich EG, Syrtsova LA, Uzenskaia AM.
    Mol Biol (Mosk); 1980 Nov 05; 14(1):147-56. PubMed ID: 6453279
    [Abstract] [Full Text] [Related]

  • 20. Electron inventory, kinetic assignment (E(n)), structure, and bonding of nitrogenase turnover intermediates with C2H2 and CO.
    Lee HI, Sørlie M, Christiansen J, Yang TC, Shao J, Dean DR, Hales BJ, Hoffman BM.
    J Am Chem Soc; 2005 Nov 16; 127(45):15880-90. PubMed ID: 16277531
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.