These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


155 related items for PubMed ID: 9770469

  • 1. Mass spectrometric evidence for the enzymatic mechanism of the depolymerization of heparin-like glycosaminoglycans by heparinase II.
    Rhomberg AJ, Shriver Z, Biemann K, Sasisekharan R.
    Proc Natl Acad Sci U S A; 1998 Oct 13; 95(21):12232-7. PubMed ID: 9770469
    [Abstract] [Full Text] [Related]

  • 2. Direct evidence for a predominantly exolytic processive mechanism for depolymerization of heparin-like glycosaminoglycans by heparinase I.
    Ernst S, Rhomberg AJ, Biemann K, Sasisekharan R.
    Proc Natl Acad Sci U S A; 1998 Apr 14; 95(8):4182-7. PubMed ID: 9539710
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Controllable production of low molecular weight heparins by combinations of heparinase I/II/III.
    Wu J, Zhang C, Mei X, Li Y, Xing XH.
    Carbohydr Polym; 2014 Jan 30; 101():484-92. PubMed ID: 24299802
    [Abstract] [Full Text] [Related]

  • 5. Histidine 295 and histidine 510 are crucial for the enzymatic degradation of heparan sulfate by heparinase III.
    Pojasek K, Shriver Z, Hu Y, Sasisekharan R.
    Biochemistry; 2000 Apr 11; 39(14):4012-9. PubMed ID: 10747789
    [Abstract] [Full Text] [Related]

  • 6. Isolation and expression in Escherichia coli of hepB and hepC, genes coding for the glycosaminoglycan-degrading enzymes heparinase II and heparinase III, respectively, from Flavobacterium heparinum.
    Su H, Blain F, Musil RA, Zimmermann JJ, Gu K, Bennett DC.
    Appl Environ Microbiol; 1996 Aug 11; 62(8):2723-34. PubMed ID: 8702264
    [Abstract] [Full Text] [Related]

  • 7. Cloning and Expression of Heparinase Gene from a Novel Strain Raoultella NX-TZ-3-15.
    Li Y, Lin Y, Jiang Y, Mehwish HM, Rajoka MSR, Zhao L.
    Appl Biochem Biotechnol; 2022 Oct 11; 194(10):4971-4984. PubMed ID: 35679015
    [Abstract] [Full Text] [Related]

  • 8. Cleavage of the antithrombin III binding site in heparin by heparinases and its implication in the generation of low molecular weight heparin.
    Shriver Z, Sundaram M, Venkataraman G, Fareed J, Linhardt R, Biemann K, Sasisekharan R.
    Proc Natl Acad Sci U S A; 2000 Sep 12; 97(19):10365-70. PubMed ID: 10984532
    [Abstract] [Full Text] [Related]

  • 9. Examination of the substrate specificity of heparin and heparan sulfate lyases.
    Linhardt RJ, Turnbull JE, Wang HM, Loganathan D, Gallagher JT.
    Biochemistry; 1990 Mar 13; 29(10):2611-7. PubMed ID: 2334685
    [Abstract] [Full Text] [Related]

  • 10. Heparinase II from Flavobacterium heparinum. Role of cysteine in enzymatic activity as probed by chemical modification and site- directed mutagenesis.
    Shriver Z, Hu Y, Pojasek K, Sasisekharan R.
    J Biol Chem; 1998 Sep 04; 273(36):22904-12. PubMed ID: 9722510
    [Abstract] [Full Text] [Related]

  • 11. Mass spectrometric and capillary electrophoretic investigation of the enzymatic degradation of heparin-like glycosaminoglycans.
    Rhomberg AJ, Ernst S, Sasisekharan R, Biemann K.
    Proc Natl Acad Sci U S A; 1998 Apr 14; 95(8):4176-81. PubMed ID: 9539709
    [Abstract] [Full Text] [Related]

  • 12. Heparinase II from Flavobacterium heparinum. Role of histidine residues in enzymatic activity as probed by chemical modification and site-directed mutagenesis.
    Shriver Z, Hu Y, Sasisekharan R.
    J Biol Chem; 1998 Apr 24; 273(17):10160-7. PubMed ID: 9553064
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Heparinase III with High Activity and Stability: Heterologous Expression, Biochemical Characterization, and Application in Depolymerization of Heparin.
    Xu CL, Zhu CY, Li YN, Gao J, Zhang YW.
    J Agric Food Chem; 2024 Feb 14; 72(6):3045-3054. PubMed ID: 38307881
    [Abstract] [Full Text] [Related]

  • 15. Conformational flexibility of PL12 family heparinases: structure and substrate specificity of heparinase III from Bacteroides thetaiotaomicron (BT4657).
    Ulaganathan T, Shi R, Yao D, Gu RX, Garron ML, Cherney M, Tieleman DP, Sterner E, Li G, Li L, Linhardt RJ, Cygler M.
    Glycobiology; 2017 Jan 14; 27(2):176-187. PubMed ID: 27621378
    [Abstract] [Full Text] [Related]

  • 16. Exploring bacterial heparinase II activities with defined substrates.
    Bohlmann L, Chang CW, Beacham I, von Itzstein M.
    Chembiochem; 2015 May 26; 16(8):1205-11. PubMed ID: 25907974
    [Abstract] [Full Text] [Related]

  • 17. A comparative analysis of the primary sequences and characteristics of heparinases I, II, and III from Flavobacterium heparinum.
    Godavarti R, Sasisekharan R.
    Biochem Biophys Res Commun; 1996 Dec 24; 229(3):770-7. PubMed ID: 8954971
    [Abstract] [Full Text] [Related]

  • 18. Heparin depolymerization by immobilized heparinase: A review.
    Bhushan I, Alabbas A, Sistla JC, Saraswat R, Desai UR, Gupta RB.
    Int J Biol Macromol; 2017 Jun 24; 99():721-730. PubMed ID: 28300590
    [Abstract] [Full Text] [Related]

  • 19. [Research progress of heparinase in the field of medicine].
    Liu W, Jiang Y, Zhao L, Zhang P, Wang S.
    Sheng Wu Gong Cheng Xue Bao; 2018 Dec 25; 34(12):1953-1962. PubMed ID: 30584706
    [Abstract] [Full Text] [Related]

  • 20. Structural characterization of heparin's binding domain for human platelets.
    Suda Y, Marques D, Kermode JC, Kusumoto S, Sobel M.
    Thromb Res; 1993 Mar 15; 69(6):501-8. PubMed ID: 8503119
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.