These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


155 related items for PubMed ID: 9770469

  • 21. Competitive inhibition of heparinase by persulfonated glycosaminoglycans: a tool to detect heparin contamination.
    Aich U, Shriver Z, Tharakaraman K, Raman R, Sasisekharan R.
    Anal Chem; 2011 Oct 15; 83(20):7815-22. PubMed ID: 21863856
    [Abstract] [Full Text] [Related]

  • 22. Distinct substrate specificities of bacterial heparinases against N-unsubstituted glucosamine residues in heparan sulfate.
    Wei Z, Lyon M, Gallagher JT.
    J Biol Chem; 2005 Apr 22; 280(16):15742-8. PubMed ID: 15705564
    [Abstract] [Full Text] [Related]

  • 23. Expression in Escherichia coli, purification and characterization of heparinase I from Flavobacterium heparinum.
    Ernst S, Venkataraman G, Winkler S, Godavarti R, Langer R, Cooney CL, Sasisekharan R.
    Biochem J; 1996 Apr 15; 315 ( Pt 2)(Pt 2):589-97. PubMed ID: 8615834
    [Abstract] [Full Text] [Related]

  • 24. Glycosaminoglycans as naturally occurring combinatorial libraries: developing a mass spectrometry-based strategy for characterization of anti-thrombin interaction with low molecular weight heparin and heparin oligomers.
    Abzalimov RR, Dubin PL, Kaltashov IA.
    Anal Chem; 2007 Aug 15; 79(16):6055-63. PubMed ID: 17658885
    [Abstract] [Full Text] [Related]

  • 25. Expression of heparinase I of Bacteroides stercoris HJ-15 and its degradation tendency toward heparin-like glycosaminoglycans.
    Hyun YJ, Jung IH, Kim DH.
    Carbohydr Res; 2012 Oct 01; 359():37-43. PubMed ID: 22925762
    [Abstract] [Full Text] [Related]

  • 26. Cloning, expression and characterization of acharan sulfate-degrading heparin lyase II from Bacteroides stercoris HJ-15.
    Hyun YJ, Lee KS, Kim DH.
    J Appl Microbiol; 2010 Jan 01; 108(1):226-35. PubMed ID: 19566715
    [Abstract] [Full Text] [Related]

  • 27. On the catalytic mechanism of polysaccharide lyases: evidence of His and Tyr involvement in heparin lysis by heparinase I and the role of Ca2+.
    Córdula CR, Lima MA, Shinjo SK, Gesteira TF, Pol-Fachin L, Coulson-Thomas VJ, Verli H, Yates EA, Rudd TR, Pinhal MA, Toma L, Dietrich CP, Nader HB, Tersariol IL.
    Mol Biosyst; 2014 Jan 01; 10(1):54-64. PubMed ID: 24232366
    [Abstract] [Full Text] [Related]

  • 28. Decorin endocytosis: structural features of heparin and heparan sulphate oligosaccharides interfering with receptor binding and endocytosis.
    Hausser H, Kresse H.
    Biochem J; 1999 Dec 15; 344 Pt 3(Pt 3):827-35. PubMed ID: 10585870
    [Abstract] [Full Text] [Related]

  • 29. Heparinase inhibits neovascularization.
    Sasisekharan R, Moses MA, Nugent MA, Cooney CL, Langer R.
    Proc Natl Acad Sci U S A; 1994 Feb 15; 91(4):1524-8. PubMed ID: 7509076
    [Abstract] [Full Text] [Related]

  • 30. Expanding the Catalytic Promiscuity of Heparinase III from Pedobacter heparinus.
    Gu Y, Lu M, Wang Z, Wu X, Chen Y.
    Chemistry; 2017 Feb 21; 23(11):2548-2551. PubMed ID: 28067452
    [Abstract] [Full Text] [Related]

  • 31. Interaction of mucopolysaccharides with glycosaminoglycans on glycosaminoglycan-bound AH-Sepharose 4B.
    Ototani N, Yosizawa Z.
    J Biochem; 1978 Oct 21; 84(4):1005-8. PubMed ID: 711694
    [Abstract] [Full Text] [Related]

  • 32. Randomness in the heparin polymer: computer simulations of alternative action patterns of heparin lyase.
    Cohen DM, Linhardt RJ.
    Biopolymers; 1990 Oct 21; 30(7-8):733-41. PubMed ID: 2275975
    [Abstract] [Full Text] [Related]

  • 33. Degradation of acharan sulfate and heparin by Bacteroides stercoris HJ-15, a human intestinal bacterium.
    Kim DH, Kim BT, Park SY, Kim NY, Han MJ, Shin KH, Kim WS, Kim YS.
    Arch Pharm Res; 1998 Oct 21; 21(5):576-80. PubMed ID: 9875498
    [Abstract] [Full Text] [Related]

  • 34. Disaccharide analysis and molecular mass determination to microgram level of single sulfated glycosaminoglycan species in mixtures following agarose-gel electrophoresis.
    Volpi N.
    Anal Biochem; 1999 Sep 10; 273(2):229-39. PubMed ID: 10469494
    [Abstract] [Full Text] [Related]

  • 35. Heparinase-II-catalyzed degradation of N-propionylated heparin.
    Moffat CF, Long WF, McLean MW, Williamson FB.
    Arch Biochem Biophys; 1997 Feb 15; 338(2):201-6. PubMed ID: 9028872
    [Abstract] [Full Text] [Related]

  • 36. Heparin-like glycosaminoglycan/amine salt-bridge interactions: a new potential tool for HLGAGs analysis using mass spectrometry.
    Xue B, Alves S, Desbans C, Souchaud M, Filali-Ansary A, Soubayrol P, Tabet JC.
    J Mass Spectrom; 2011 Jul 15; 46(7):689-95. PubMed ID: 21744418
    [Abstract] [Full Text] [Related]

  • 37. Fibroblast growth factors 1 and 2 are distinct in oligomerization in the presence of heparin-like glycosaminoglycans.
    Venkataraman G, Shriver Z, Davis JC, Sasisekharan R.
    Proc Natl Acad Sci U S A; 1999 Mar 02; 96(5):1892-7. PubMed ID: 10051565
    [Abstract] [Full Text] [Related]

  • 38. Microbial heparin/heparan sulphate lyases: potential and applications.
    Tripathi CK, Banga J, Mishra V.
    Appl Microbiol Biotechnol; 2012 Apr 02; 94(2):307-21. PubMed ID: 22391972
    [Abstract] [Full Text] [Related]

  • 39. Plasmodium falciparum: molecular background to strain-specific rosette disruption by glycosaminoglycans and sulfated glycoconjugates.
    Barragan A, Spillmann D, Kremsner PG, Wahlgren M, Carlson J.
    Exp Parasitol; 1999 Feb 02; 91(2):133-43. PubMed ID: 9990341
    [Abstract] [Full Text] [Related]

  • 40. Production, characteristics and applications of microbial heparinases.
    Boyce A, Walsh G.
    Biochimie; 2022 Jul 02; 198():109-140. PubMed ID: 35367577
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 8.