These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
483 related items for PubMed ID: 9772181
1. Influence of tightly bound Mg2+ and Ca2+, nucleotides, and phalloidin on the microsecond torsional flexibility of F-actin. Rebello CA, Ludescher RD. Biochemistry; 1998 Oct 13; 37(41):14529-38. PubMed ID: 9772181 [Abstract] [Full Text] [Related]
2. Differential dynamic behavior of actin filaments containing tightly-bound Ca2+ or Mg2+ in the presence of myosin heads actively hydrolyzing ATP. Rebello CA, Ludescher RD. Biochemistry; 1999 Oct 05; 38(40):13288-95. PubMed ID: 10529203 [Abstract] [Full Text] [Related]
3. Differential mobility of skeletal and cardiac tropomyosin on the surface of F-actin. Chandy IK, Lo JC, Ludescher RD. Biochemistry; 1999 Jul 20; 38(29):9286-94. PubMed ID: 10413502 [Abstract] [Full Text] [Related]
4. Polymerization, three-dimensional structure and mechanical properties of Ddictyostelium versus rabbit muscle actin filaments. Steinmetz MO, Hoenger A, Stoffler D, Noegel AA, Aebi U, Schoenenberger CA. J Mol Biol; 2000 Oct 20; 303(2):171-84. PubMed ID: 11023784 [Abstract] [Full Text] [Related]
5. A conformational change in the actin subunit can change the flexibility of the actin filament. Orlova A, Egelman EH. J Mol Biol; 1993 Jul 20; 232(2):334-41. PubMed ID: 8345515 [Abstract] [Full Text] [Related]
6. The role of ATP, ADP and divalent cations in the formation of binary and ternary complexes of actin, cofilin and DNase I. Chhabra D, Nosworthy NJ, dos Remedios CG. Electrophoresis; 2000 Nov 20; 21(17):3863-9. PubMed ID: 11271505 [Abstract] [Full Text] [Related]
8. Intermonomer cross-linking of F-actin alters the dynamics of its interaction with H-meromyosin in the weak-binding state. Hegyi G, Belágyi J. FEBS J; 2006 May 20; 273(9):1896-905. PubMed ID: 16640554 [Abstract] [Full Text] [Related]
9. The polyelectrolyte behavior of actin filaments: a 25Mg NMR study. Xian W, Tang JX, Janmey PA, Braunlin WH. Biochemistry; 1999 Jun 01; 38(22):7219-26. PubMed ID: 10353833 [Abstract] [Full Text] [Related]
10. Thermodynamics of actin polymerization; influence of the tightly bound divalent cation and nucleotide. Kinosian HJ, Selden LA, Estes JE, Gershman LC. Biochim Biophys Acta; 1991 Apr 08; 1077(2):151-8. PubMed ID: 2015289 [Abstract] [Full Text] [Related]
11. Kinetics and thermodynamics of phalloidin binding to actin filaments from three divergent species. De La Cruz EM, Pollard TD. Biochemistry; 1996 Nov 12; 35(45):14054-61. PubMed ID: 8916890 [Abstract] [Full Text] [Related]
13. Structural dynamics of actin during active interaction with myosin: different effects of weakly and strongly bound myosin heads. Prochniewicz E, Walseth TF, Thomas DD. Biochemistry; 2004 Aug 24; 43(33):10642-52. PubMed ID: 15311925 [Abstract] [Full Text] [Related]
14. Specific cleavage of the DNase-I binding loop dramatically decreases the thermal stability of actin. Pivovarova AV, Khaitlina SY, Levitsky DI. FEBS J; 2010 Sep 24; 277(18):3812-22. PubMed ID: 20718862 [Abstract] [Full Text] [Related]
15. Nucleotide-dependence of G-actin conformation from multiple molecular dynamics simulations and observation of a putatively polymerization-competent superclosed state. Splettstoesser T, Noé F, Oda T, Smith JC. Proteins; 2009 Aug 01; 76(2):353-64. PubMed ID: 19156817 [Abstract] [Full Text] [Related]
20. Molecular investigations into the mechanics of actin in different nucleotide states. Lee JY, Iverson TM, Dima RI. J Phys Chem B; 2011 Jan 13; 115(1):186-95. PubMed ID: 21141951 [Abstract] [Full Text] [Related] Page: [Next] [New Search]