These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
952 related items for PubMed ID: 9772215
41. Prevention of acetaminophen-induced cataract by a combination of diallyl disulfide and N-acetylcysteine. Zhao C, Shichi H. J Ocul Pharmacol Ther; 1998 Aug; 14(4):345-55. PubMed ID: 9715438 [Abstract] [Full Text] [Related]
42. Glutamate cysteine ligase modifier subunit deficiency and gender as determinants of acetaminophen-induced hepatotoxicity in mice. McConnachie LA, Mohar I, Hudson FN, Ware CB, Ladiges WC, Fernandez C, Chatterton-Kirchmeier S, White CC, Pierce RH, Kavanagh TJ. Toxicol Sci; 2007 Oct; 99(2):628-36. PubMed ID: 17584759 [Abstract] [Full Text] [Related]
43. Hepato-protective effects of six schisandra lignans on acetaminophen-induced liver injury are partially associated with the inhibition of CYP-mediated bioactivation. Jiang Y, Fan X, Wang Y, Tan H, Chen P, Zeng H, Huang M, Bi H. Chem Biol Interact; 2015 Apr 25; 231():83-9. PubMed ID: 25753323 [Abstract] [Full Text] [Related]
44. Prevention of acetaminophen (APAP)-induced hepatotoxicity by leflunomide via inhibition of APAP biotransformation to N-acetyl-p-benzoquinone imine. Tan SC, New LS, Chan EC. Toxicol Lett; 2008 Aug 28; 180(3):174-81. PubMed ID: 18588957 [Abstract] [Full Text] [Related]
45. Reduction of toxic metabolite formation of acetaminophen. Hazai E, Vereczkey L, Monostory K. Biochem Biophys Res Commun; 2002 Mar 08; 291(4):1089-94. PubMed ID: 11866476 [Abstract] [Full Text] [Related]
46. Nonalcoholic steatohepatitic (NASH) mice are protected from higher hepatotoxicity of acetaminophen upon induction of PPARalpha with clofibrate. Donthamsetty S, Bhave VS, Mitra MS, Latendresse JR, Mehendale HM. Toxicol Appl Pharmacol; 2008 Aug 01; 230(3):327-37. PubMed ID: 18501395 [Abstract] [Full Text] [Related]
47. Reduced acetaminophen-induced liver injury in mice by genetic disruption of IL-1 receptor antagonist. Ishibe T, Kimura A, Ishida Y, Takayasu T, Hayashi T, Tsuneyama K, Matsushima K, Sakata I, Mukaida N, Kondo T. Lab Invest; 2009 Jan 01; 89(1):68-79. PubMed ID: 19002106 [Abstract] [Full Text] [Related]
48. Inactivation of glyceraldehyde-3-phosphate dehydrogenase by a reactive metabolite of acetaminophen and mass spectral characterization of an arylated active site peptide. Dietze EC, Schäfer A, Omichinski JG, Nelson SD. Chem Res Toxicol; 1997 Oct 01; 10(10):1097-103. PubMed ID: 9348431 [Abstract] [Full Text] [Related]
49. A nutrient mixture prevents acetaminophen hepatic and renal toxicity in ICR mice. Roomi MW, Kalinovsky T, Ivanov V, Rath M, Niedzwiecki A. Hum Exp Toxicol; 2008 Mar 01; 27(3):223-30. PubMed ID: 18650254 [Abstract] [Full Text] [Related]
50. Selective mitochondrial glutathione depletion by ethanol enhances acetaminophen toxicity in rat liver. Zhao P, Kalhorn TF, Slattery JT. Hepatology; 2002 Aug 01; 36(2):326-35. PubMed ID: 12143040 [Abstract] [Full Text] [Related]
51. Arjunolic acid, a triterpenoid saponin, prevents acetaminophen (APAP)-induced liver and hepatocyte injury via the inhibition of APAP bioactivation and JNK-mediated mitochondrial protection. Ghosh J, Das J, Manna P, Sil PC. Free Radic Biol Med; 2010 Feb 15; 48(4):535-53. PubMed ID: 19969075 [Abstract] [Full Text] [Related]
52. Cytotoxicity of acetaminophen in human cytochrome P4502E1-transfected HepG2 cells. Dai Y, Cederbaum AI. J Pharmacol Exp Ther; 1995 Jun 15; 273(3):1497-505. PubMed ID: 7791125 [Abstract] [Full Text] [Related]
53. A novel mechanism for the enhancement of acetaminophen hepatotoxicity by phenobarbital. Douidar SM, Ahmed AE. J Pharmacol Exp Ther; 1987 Feb 15; 240(2):578-83. PubMed ID: 3806412 [Abstract] [Full Text] [Related]
54. Increased mitochondrial stress and modulation of mitochondrial respiratory enzyme activities in acetaminophen-induced toxicity in mouse macrophage cells. Al-Belooshi T, John A, Tariq S, Al-Otaiba A, Raza H. Food Chem Toxicol; 2010 Oct 15; 48(10):2624-32. PubMed ID: 20600533 [Abstract] [Full Text] [Related]
55. Rifampicin-activated human pregnane X receptor and CYP3A4 induction enhance acetaminophen-induced toxicity. Cheng J, Ma X, Krausz KW, Idle JR, Gonzalez FJ. Drug Metab Dispos; 2009 Aug 15; 37(8):1611-21. PubMed ID: 19460945 [Abstract] [Full Text] [Related]
56. Mice deficient in Cu,Zn-superoxide dismutase are resistant to acetaminophen toxicity. Lei XG, Zhu JH, McClung JP, Aregullin M, Roneker CA. Biochem J; 2006 Nov 01; 399(3):455-61. PubMed ID: 16831125 [Abstract] [Full Text] [Related]
58. Taurine protects acetaminophen-induced oxidative damage in mice kidney through APAP urinary excretion and CYP2E1 inactivation. Das J, Ghosh J, Manna P, Sil PC. Toxicology; 2010 Feb 28; 269(1):24-34. PubMed ID: 20067817 [Abstract] [Full Text] [Related]
59. 2,3,4',5-tetrahydroxystilbene-2-O-β-D-glucoside exacerbates acetaminophen-induced hepatotoxicity by inducing hepatic expression of CYP2E1, CYP3A4 and CYP1A2. Xu S, Liu J, Shi J, Wang Z, Ji L. Sci Rep; 2017 Nov 28; 7(1):16511. PubMed ID: 29184146 [Abstract] [Full Text] [Related]
60. CCR5 knockout mice with C57BL6 background are resistant to acetaminophen-mediated hepatotoxicity due to decreased macrophages migration into the liver. Choi DY, Ban JO, Kim SC, Hong JT. Arch Toxicol; 2015 Feb 28; 89(2):211-20. PubMed ID: 24770590 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]