These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
149 related items for PubMed ID: 9779151
1. Continuous intracranial multimodality monitoring comparing local cerebral blood flow, cerebral perfusion pressure, and microvascular resistance. Miller JI, Chou MW, Capocelli A, Bolognese P, Pan J, Milhorat TH. Acta Neurochir Suppl; 1998; 71():82-4. PubMed ID: 9779151 [Abstract] [Full Text] [Related]
2. Continuous cerebral compliance monitoring in severe head injury: its relationship with intracranial pressure and cerebral perfusion pressure. Portella G, Cormio M, Citerio G, Contant C, Kiening K, Enblad P, Piper I. Acta Neurochir (Wien); 2005 Jul; 147(7):707-13; discussion 713. PubMed ID: 15900402 [Abstract] [Full Text] [Related]
3. Monitoring of autoregulation using laser Doppler flowmetry in patients with head injury. Lam JM, Hsiang JN, Poon WS. J Neurosurg; 1997 Mar; 86(3):438-45. PubMed ID: 9046300 [Abstract] [Full Text] [Related]
4. Incorporating a parenchymal thermal diffusion cerebral blood flow probe in bedside assessment of cerebral autoregulation and vasoreactivity in patients with severe traumatic brain injury. Rosenthal G, Sanchez-Mejia RO, Phan N, Hemphill JC, Martin C, Manley GT. J Neurosurg; 2011 Jan; 114(1):62-70. PubMed ID: 20707619 [Abstract] [Full Text] [Related]
5. Experimental aspects of cerebrospinal hemodynamics: the relationship between blood flow velocity waveform and cerebral autoregulation. Nelson RJ, Czosnyka M, Pickard JD, Maksymowicz W, Perry S, Martin JL, Lovick AH. Neurosurgery; 1992 Oct; 31(4):705-9; discussion 709-10. PubMed ID: 1407456 [Abstract] [Full Text] [Related]
6. Testing of cerebral autoregulation in head injury by waveform analysis of blood flow velocity and cerebral perfusion pressure. Czosnyka M, Guazzo E, Iyer V, Kirkpatrick P, Smielewski P, Whitehouse H, Pickard JD. Acta Neurochir Suppl (Wien); 1994 Oct; 60():468-71. PubMed ID: 7976622 [Abstract] [Full Text] [Related]
7. Influence of body position on jugular venous oxygen saturation, intracranial pressure and cerebral perfusion pressure. Schneider GH, von Helden GH, Franke R, Lanksch WR, Unterberg A. Acta Neurochir Suppl (Wien); 1993 Oct; 59():107-12. PubMed ID: 8310857 [Abstract] [Full Text] [Related]
8. Pressure autoregulation monitoring and cerebral perfusion pressure target recommendation in patients with severe traumatic brain injury based on minute-by-minute monitoring data. Depreitere B, Güiza F, Van den Berghe G, Schuhmann MU, Maier G, Piper I, Meyfroidt G. J Neurosurg; 2014 Jun; 120(6):1451-7. PubMed ID: 24745709 [Abstract] [Full Text] [Related]
9. Early effects of mannitol in patients with head injuries assessed using bedside multimodality monitoring. Kirkpatrick PJ, Smielewski P, Piechnik S, Pickard JD, Czosnyka M. Neurosurgery; 1996 Oct; 39(4):714-20; discussion 720-1. PubMed ID: 8880763 [Abstract] [Full Text] [Related]
10. The effect of changes in cerebral perfusion pressure upon middle cerebral artery blood flow velocity and jugular bulb venous oxygen saturation after severe brain injury. Chan KH, Miller JD, Dearden NM, Andrews PJ, Midgley S. J Neurosurg; 1992 Jul; 77(1):55-61. PubMed ID: 1607972 [Abstract] [Full Text] [Related]
11. Clazosentan, an endothelin receptor antagonist, prevents early hypoperfusion during the acute phase of massive experimental subarachnoid hemorrhage: a laser Doppler flowmetry study in rats. Schubert GA, Schilling L, Thomé C. J Neurosurg; 2008 Dec; 109(6):1134-40. PubMed ID: 19035733 [Abstract] [Full Text] [Related]
12. Continuous postoperative lCBF monitoring in aneurysmal SAH patients using a combined ICP-laser Doppler fiberoptic probe. Johnson WD, Bolognese P, Miller JI, Heger IM, Liker MA, Milhorat TH. J Neurosurg Anesthesiol; 1996 Jul; 8(3):199-207. PubMed ID: 8803831 [Abstract] [Full Text] [Related]
13. Correlation of jugular venous oxygen saturation to spontaneous fluctuations of cerebral perfusion pressure in patients with severe head injury. Murr R, Schürer L. Neurol Res; 1995 Oct; 17(5):329-33. PubMed ID: 8584122 [Abstract] [Full Text] [Related]
14. High cerebral perfusion pressure improves low values of local brain tissue O2 tension (PtiO2) in focal lesions. Stocchetti N, Chieregato A, De Marchi M, Croci M, Benti R, Grimoldi N. Acta Neurochir Suppl; 1998 Oct; 71():162-5. PubMed ID: 9779173 [Abstract] [Full Text] [Related]
15. Determining cerebral perfusion pressure thresholds in severe head trauma. Lewis S, Wong M, Myburgh J, Reilly P. Acta Neurochir Suppl; 1998 Oct; 71():174-6. PubMed ID: 9779177 [Abstract] [Full Text] [Related]
16. [Behavior of cerebral blood flow velocity in conventional ventilation and superimposed high frequency jet ventilation]. Schragl E, Pfisterer W, Reinprecht A, Donner A, Aloy A. Anasthesiol Intensivmed Notfallmed Schmerzther; 1995 Aug; 30(5):283-9. PubMed ID: 7548479 [Abstract] [Full Text] [Related]
18. Comparative effects of hypothermia, barbiturate, and osmotherapy for cerebral oxygen metabolism, intracranial pressure, and cerebral perfusion pressure in patients with severe head injury. Nara I, Shiogai T, Hara M, Saito I. Acta Neurochir Suppl; 1998 Aug; 71():22-6. PubMed ID: 9779133 [Abstract] [Full Text] [Related]
19. False autoregulation (pseudoautoregulation) in patients with severe head injury. Its importance in CPP management. Sahuquillo J, Amoros S, Santos A, Poca MA, Valenzuela H, Báguena M, Garnacho A. Acta Neurochir Suppl; 2000 Aug; 76():485-90. PubMed ID: 11450075 [Abstract] [Full Text] [Related]
20. Monitoring of cerebrospinal dynamics using continuous analysis of intracranial pressure and cerebral perfusion pressure in head injury. Czosnyka M, Price DJ, Williamson M. Acta Neurochir (Wien); 1994 Aug; 126(2-4):113-9. PubMed ID: 8042541 [Abstract] [Full Text] [Related] Page: [Next] [New Search]