These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


168 related items for PubMed ID: 9783169

  • 1. Analysis of intracellular pH in the yeast Saccharomyces cerevisiae under elevated hydrostatic pressure: a study in baro- (piezo-) physiology.
    Abe F, Horikoshi K.
    Extremophiles; 1998 Aug; 2(3):223-8. PubMed ID: 9783169
    [Abstract] [Full Text] [Related]

  • 2. Vacuolar acidification in Saccharomyces cerevisiae induced by elevated hydrostatic pressure is transient and is mediated by vacuolar H+-ATPase.
    Abe F, Horikoshi K.
    Extremophiles; 1997 May; 1(2):89-93. PubMed ID: 9680307
    [Abstract] [Full Text] [Related]

  • 3. Hydrostatic pressure promotes the acidification of vacuoles in Saccharomyces cerevisiae.
    Abe F, Horikoshi K.
    FEMS Microbiol Lett; 1995 Aug 01; 130(2-3):307-12. PubMed ID: 7649454
    [Abstract] [Full Text] [Related]

  • 4. Saccharomyces cerevisiae lacking Btn1p modulate vacuolar ATPase activity to regulate pH imbalance in the vacuole.
    Padilla-López S, Pearce DA.
    J Biol Chem; 2006 Apr 14; 281(15):10273-80. PubMed ID: 16423829
    [Abstract] [Full Text] [Related]

  • 5. Alternative mechanisms of vacuolar acidification in H(+)-ATPase-deficient yeast.
    Plant PJ, Manolson MF, Grinstein S, Demaurex N.
    J Biol Chem; 1999 Dec 24; 274(52):37270-9. PubMed ID: 10601292
    [Abstract] [Full Text] [Related]

  • 6. Compartment acidification is required for efficient sorting of proteins to the vacuole in Saccharomyces cerevisiae.
    Klionsky DJ, Nelson H, Nelson N.
    J Biol Chem; 1992 Feb 15; 267(5):3416-22. PubMed ID: 1531340
    [Abstract] [Full Text] [Related]

  • 7. The dual mechanism of the antifungal effect of new lysosomotropic agents on the Saccharomyces cerevisiae RXII strain.
    Krasowska A, Chmielewska L, Łuczyński J, Witek S, Sigler K.
    Cell Mol Biol Lett; 2003 Feb 15; 8(1):111-20. PubMed ID: 12655364
    [Abstract] [Full Text] [Related]

  • 8. Roles of the VMA3 gene product, subunit c of the vacuolar membrane H(+)-ATPase on vacuolar acidification and protein transport. A study with VMA3-disrupted mutants of Saccharomyces cerevisiae.
    Umemoto N, Yoshihisa T, Hirata R, Anraku Y.
    J Biol Chem; 1990 Oct 25; 265(30):18447-53. PubMed ID: 2145283
    [Abstract] [Full Text] [Related]

  • 9. Coordinated glucose-induced Ca2+ and pH responses in yeast Saccharomyces cerevisiae.
    Ma TY, Deprez MA, Callewaert G, Winderickx J.
    Cell Calcium; 2021 Dec 25; 100():102479. PubMed ID: 34610487
    [Abstract] [Full Text] [Related]

  • 10. Protein sorting in yeast: the role of the vacuolar proton-translocating ATPase.
    Kane PM, Yamashiro CT, Rothman JH, Stevens TH.
    J Cell Sci Suppl; 1989 Dec 25; 11():161-78. PubMed ID: 2533204
    [Abstract] [Full Text] [Related]

  • 11. The Fab1/PIKfyve phosphoinositide phosphate kinase is not necessary to maintain the pH of lysosomes and of the yeast vacuole.
    Ho CY, Choy CH, Wattson CA, Johnson DE, Botelho RJ.
    J Biol Chem; 2015 Apr 10; 290(15):9919-28. PubMed ID: 25713145
    [Abstract] [Full Text] [Related]

  • 12. Assay of vacuolar pH in yeast and identification of acidification-defective mutants.
    Preston RA, Murphy RF, Jones EW.
    Proc Natl Acad Sci U S A; 1989 Sep 10; 86(18):7027-31. PubMed ID: 2674942
    [Abstract] [Full Text] [Related]

  • 13. Role of vacuolar acidification in protein sorting and zymogen activation: a genetic analysis of the yeast vacuolar proton-translocating ATPase.
    Yamashiro CT, Kane PM, Wolczyk DF, Preston RA, Stevens TH.
    Mol Cell Biol; 1990 Jul 10; 10(7):3737-49. PubMed ID: 2141385
    [Abstract] [Full Text] [Related]

  • 14. Characterisation of proton fluxes across the cytoplasmic membrane of the yeast Saccharomyces cerevisiae.
    Haworth RS, Lemire BD, Crandall D, Cragoe EJ, Fliegel L.
    Biochim Biophys Acta; 1991 Dec 03; 1098(1):79-89. PubMed ID: 1661160
    [Abstract] [Full Text] [Related]

  • 15. Vacuolar H+-ATPase Protects Saccharomyces cerevisiae Cells against Ethanol-Induced Oxidative and Cell Wall Stresses.
    Charoenbhakdi S, Dokpikul T, Burphan T, Techo T, Auesukaree C.
    Appl Environ Microbiol; 2016 May 15; 82(10):3121-3130. PubMed ID: 26994074
    [Abstract] [Full Text] [Related]

  • 16. Effect of extracellular acidification on the activity of plasma membrane ATPase and on the cytosolic and vacuolar pH of Saccharomyces cerevisiae.
    Carmelo V, Santos H, Sá-Correia I.
    Biochim Biophys Acta; 1997 Apr 03; 1325(1):63-70. PubMed ID: 9106483
    [Abstract] [Full Text] [Related]

  • 17. Chemiosmotic coupling of ion transport in the yeast vacuole: its role in acidification inside organelles.
    Wada Y, Anraku Y.
    J Bioenerg Biomembr; 1994 Dec 03; 26(6):631-7. PubMed ID: 7721725
    [Abstract] [Full Text] [Related]

  • 18. Protein targeting to the yeast vacuole.
    Rothman JH, Yamashiro CT, Kane PM, Stevens TH.
    Trends Biochem Sci; 1989 Aug 03; 14(8):347-50. PubMed ID: 2529676
    [Abstract] [Full Text] [Related]

  • 19. Proton Transport and pH Control in Fungi.
    Kane PM.
    Adv Exp Med Biol; 2016 Aug 03; 892():33-68. PubMed ID: 26721270
    [Abstract] [Full Text] [Related]

  • 20. Molecular analysis of the yeast VPS3 gene and the role of its product in vacuolar protein sorting and vacuolar segregation during the cell cycle.
    Raymond CK, O'Hara PJ, Eichinger G, Rothman JH, Stevens TH.
    J Cell Biol; 1990 Sep 03; 111(3):877-92. PubMed ID: 2202738
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.