These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
346 related items for PubMed ID: 9786086
1. Evidence for a direct conversion between two tubulin polymers--microtubules and helical filaments--in the foraminiferan, Allogromia laticollaris. Welnhofer EA, Travis JL. Cell Motil Cytoskeleton; 1998; 41(2):107-16. PubMed ID: 9786086 [Abstract] [Full Text] [Related]
2. In vivo microtubule dynamics during experimentally induced conversions between tubulin assembly states in Allogromia laticollaris. Welnhofer EA, Travis JL. Cell Motil Cytoskeleton; 1996; 34(2):81-94. PubMed ID: 8769721 [Abstract] [Full Text] [Related]
3. Microfilament and microtubule organization and dynamics in process extension by central glia-4 oligodendrocytes: evidence for a microtubule organizing center. Rumsby M, Afsari F, Stark M, Hughson E. Glia; 2003 Apr 15; 42(2):118-29. PubMed ID: 12655596 [Abstract] [Full Text] [Related]
4. Microtubules switch occasionally into unfavorable configurations during elongation. Chrétien D, Fuller SD. J Mol Biol; 2000 May 12; 298(4):663-76. PubMed ID: 10788328 [Abstract] [Full Text] [Related]
9. A new function for the gamma-tubulin ring complex as a microtubule minus-end cap. Wiese C, Zheng Y. Nat Cell Biol; 2000 Jun 12; 2(6):358-64. PubMed ID: 10854327 [Abstract] [Full Text] [Related]
13. Direct evidence for the occurrence of simple microtubule organizing centers (MTOCs) and for end-to-end joining of microtubules with modified ends in the reticulopodia of Allogromia laticollaris (foraminifera). Golz R, Hauser M. Eur J Protistol; 1991 Nov 29; 27(4):357-64. PubMed ID: 23194846 [Abstract] [Full Text] [Related]
14. Immunocytochemical studies of intermediate filament aggregates and their relationship to microtubules in cultured skin fibroblasts from patients with giant axonal neuropathy. Pena SD, Opas M, Turksen K, Kalnins VI, Carpenter S. Eur J Cell Biol; 1983 Sep 29; 31(2):227-34. PubMed ID: 6315439 [Abstract] [Full Text] [Related]
15. Adhesion structures and their cytoskeleton-membrane interactions at podosomes of osteoclasts in culture. Akisaka T, Yoshida H, Suzuki R, Takama K. Cell Tissue Res; 2008 Mar 29; 331(3):625-41. PubMed ID: 18087726 [Abstract] [Full Text] [Related]
16. Determination of the net exchange rate of tubulin dimer in steady-state microtubules by fluorescence correlation spectroscopy. Neumann T, Kirschstein SO, Camacho Gomez JA, Kittler L, Unger E. Biol Chem; 2001 Mar 29; 382(3):387-91. PubMed ID: 11347885 [Abstract] [Full Text] [Related]
17. Reactivation of Ca2+-dependent cytoplasmic contraction in permeabilized cell models of the heliozoon Echinosphaerium akamae. Arikawa M, Suzaki T. Cell Motil Cytoskeleton; 2002 Dec 29; 53(4):267-72. PubMed ID: 12378536 [Abstract] [Full Text] [Related]
18. Microtubules as mechanical force sensors. Karafyllidis IG, Lagoudas DC. Biosystems; 2007 Mar 29; 88(1-2):137-46. PubMed ID: 16806669 [Abstract] [Full Text] [Related]
19. A rotation model for microtubule and filament sliding. Jarosch R, Foissner I. Eur J Cell Biol; 1982 Feb 29; 26(2):295-302. PubMed ID: 6461555 [Abstract] [Full Text] [Related]
20. Microtubule-dependent microtubule nucleation based on recruitment of gamma-tubulin in higher plants. Murata T, Sonobe S, Baskin TI, Hyodo S, Hasezawa S, Nagata T, Horio T, Hasebe M. Nat Cell Biol; 2005 Oct 29; 7(10):961-8. PubMed ID: 16138083 [Abstract] [Full Text] [Related] Page: [Next] [New Search]