These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


127 related items for PubMed ID: 9788244

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. In vitro evidence that phospholipid secretion into bile may be coordinated intracellularly by the combined actions of bile salts and the specific phosphatidylcholine transfer protein of liver.
    Cohen DE, Leonard MR, Carey MC.
    Biochemistry; 1994 Aug 23; 33(33):9975-80. PubMed ID: 8061007
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Sterol carrier and lipid transfer proteins.
    Scallen TJ, Pastuszyn A, Noland BJ, Chanderbhan R, Kharroubi A, Vahouny GV.
    Chem Phys Lipids; 1985 Sep 23; 38(3):239-61. PubMed ID: 3910286
    [Abstract] [Full Text] [Related]

  • 9. Acidic phospholipids strikingly potentiate sterol carrier protein 2 mediated intermembrane sterol transfer.
    Butko P, Hapala I, Scallen TJ, Schroeder F.
    Biochemistry; 1990 May 01; 29(17):4070-7. PubMed ID: 2361131
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Intermembrane cholesterol transfer: role of sterol carrier proteins and phosphatidylserine.
    Schroeder F, Butko P, Hapala I, Scallen TJ.
    Lipids; 1990 Nov 01; 25(11):669-74. PubMed ID: 2280670
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. [Mechanism of Taurohyodeoxycholate-induced Biliary Phospholipid Efflux -Understanding the Function of the ABCB4 Enhancer for Developing Therapeutic Agents against Bile Salt-induced Liver Injury].
    Ikeda Y.
    Yakugaku Zasshi; 2020 Nov 01; 140(11):1329-1334. PubMed ID: 33132268
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Structural alterations in lecithin-cholesterol vesicles following interactions with monomeric and micellar bile salts: physical-chemical basis for subselection of biliary lecithin species and aggregative states of biliary lipids during bile formation.
    Cohen DE, Angelico M, Carey MC.
    J Lipid Res; 1990 Jan 01; 31(1):55-70. PubMed ID: 2313205
    [Abstract] [Full Text] [Related]

  • 16. Bile salt-membrane interactions and the physico-chemical mechanisms of bile salt toxicity.
    Heuman DM.
    Ital J Gastroenterol; 1995 Sep 01; 27(7):372-5. PubMed ID: 8563009
    [Abstract] [Full Text] [Related]

  • 17. Influence of Phosphatidylcholine and Calcium on Self-Association and Bile Salt Mixed Micellar Binding of the Natural Bile Pigment, Bilirubin Ditaurate.
    Neubrand MW, Carey MC, Laue TM.
    Biochemistry; 2015 Nov 17; 54(45):6783-95. PubMed ID: 26506107
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Incorporation of cholesterol in sphingomyelin- phosphatidylcholine vesicles has profound effects on detergent-induced phase transitions.
    Moschetta A, Frederik PM, Portincasa P, vanBerge-Henegouwen GP, van Erpecum KJ.
    J Lipid Res; 2002 Jul 17; 43(7):1046-53. PubMed ID: 12091488
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.