These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
113 related items for PubMed ID: 9794093
1. Effect of orotic acid and magnesium orotate on the development and progression of the UM-X7.1 hamster hereditary cardiomyopathy. Jasmin G, Proschek L. Cardiovasc Drugs Ther; 1998 Sep; 12 Suppl 2():189-95. PubMed ID: 9794093 [Abstract] [Full Text] [Related]
2. Alterations in cardiac SR Ca(2+)-release channels during development of heart failure in cardiomyopathic hamsters. Ueyama T, Ohkusa T, Hisamatsu Y, Nakamura Y, Yamamoto T, Yano M, Matsuzaki M. Am J Physiol; 1998 Jan; 274(1):H1-7. PubMed ID: 9458845 [Abstract] [Full Text] [Related]
3. Altered expression of connexin43 contributes to the arrhythmogenic substrate during the development of heart failure in cardiomyopathic hamster. Sato T, Ohkusa T, Honjo H, Suzuki S, Yoshida MA, Ishiguro YS, Nakagawa H, Yamazaki M, Yano M, Kodama I, Matsuzaki M. Am J Physiol Heart Circ Physiol; 2008 Mar; 294(3):H1164-73. PubMed ID: 18065522 [Abstract] [Full Text] [Related]
4. Effects of mibefradil, a T- and L-type calcium channel blocker, on cardiac remodeling in the UM-X7.1 cardiomyopathic hamster. Villame J, Massicotte J, Jasmin G, Dumont L. Cardiovasc Drugs Ther; 2001 Jan; 15(1):41-8. PubMed ID: 11504162 [Abstract] [Full Text] [Related]
5. Hereditary polymyopathy and cardiomyopathy in the Syrian hamster. I. Progression of heart and skeletal muscle lesions in the UM-X7.1 line. Jasmin G, Proschek L. Muscle Nerve; 1982 Jan; 5(1):20-5. PubMed ID: 7057801 [Abstract] [Full Text] [Related]
7. Beta-adrenoceptor mediated signal transduction in congestive heart failure in cardiomyopathic (UM-X7.1) hamsters. Kaura D, Takeda N, Sethi R, Wang X, Nagano M, Dhalla NS. Mol Cell Biochem; 1998 Sep; 157(1-2):191-6. PubMed ID: 8739246 [Abstract] [Full Text] [Related]
8. Prevention of hereditary cardiomyopathy in the hamster by verapamil and other agents. Jasmin G, Solymoss B. Proc Soc Exp Biol Med; 1975 May; 149(1):193-8. PubMed ID: 1144427 [Abstract] [Full Text] [Related]
9. Enhanced healing of myocardial lesions and prevention of congestive heart failure. Experimental studies on the therapeutic effect of K-salts, alone and in combination with glucose and insulin, in a hereditary cardiomyopathy. Bajusz E. Arzneimittelforschung; 1969 Nov; 19(11):1830-6. PubMed ID: 5395653 [No Abstract] [Full Text] [Related]
10. Effects of lercanidipine on coronary reactivity and myocardial remodeling in transition to heart failure in cardiomyopathic hamsters. Massicotte J, Viens A, Yao MH, Leonardi A, Sironi G, Wang H, Dumont L. Acta Pharmacol Sin; 2003 Mar; 24(3):199-206. PubMed ID: 12617766 [Abstract] [Full Text] [Related]
11. Celiprolol, a beta-adrenoceptor antagonist with vasodilator effect, improves hemodynamic response to catecholamine, spontaneous locomotor activity, and survival in cardiomyopathic hamsters with advanced heart failure. Nakamura Y, Ryoke T, Tanaka N, Ohkusa T, Matsuzaki M. J Cardiovasc Pharmacol; 1998 Feb; 31(2):171-8. PubMed ID: 9475257 [Abstract] [Full Text] [Related]
12. Interrelationships between reparative processes in myocardium and the development of congestive heart failure. Bajusz E. Rev Can Biol; 1968 Mar; 27(1):45-60. PubMed ID: 5704683 [No Abstract] [Full Text] [Related]
13. Increase of NADPH oxidase 3 in heart failure of hereditary cardiomyopathy 1. Bkaily G, Najibeddine W, Jacques D. Can J Physiol Pharmacol; 2019 Sep; 97(9):902-908. PubMed ID: 30897339 [Abstract] [Full Text] [Related]
14. Bone disorder in cardiomyopathic hamsters. Togari A, Arai M, Matsumoto S, Tarumoto Y, Takahashi H. Bone Miner; 1989 Sep; 7(2):127-36. PubMed ID: 2529935 [Abstract] [Full Text] [Related]
15. Enalapril treatment increases cardiac performance and energy reserve via the creatine kinase reaction in myocardium of Syrian myopathic hamsters with advanced heart failure. Nascimben L, Friedrich J, Liao R, Pauletto P, Pessina AC, Ingwall JS. Circulation; 1995 Mar 15; 91(6):1824-33. PubMed ID: 7882493 [Abstract] [Full Text] [Related]
16. Pathological changes of myocardial cytoskeleton in cardiomyopathic hamster. Kawaguchi N, Fujitani N, Schaper J, Onishi S. Mol Cell Biochem; 1995 Mar 09; 144(1):75-9. PubMed ID: 7791749 [Abstract] [Full Text] [Related]
17. Myocardial expression of atrial natriuretic factor gene in early stages of hamster cardiomyopathy. Di Nardo P, Minieri M, Carbone A, Maggiano N, Micheletti R, Peruzzi G, Tallarida G. Mol Cell Biochem; 1993 Aug 25; 125(2):179-92. PubMed ID: 8283973 [Abstract] [Full Text] [Related]
18. Growth hormone preserves cardiac sarcoplasmic reticulum Ca2+ release channels (ryanodine receptors) and enhances cardiac function in cardiomyopathic hamsters. Ueyama T, Ohkusa T, Yano M, Matsuzaki M. Cardiovasc Res; 1998 Oct 25; 40(1):64-73. PubMed ID: 9876318 [Abstract] [Full Text] [Related]
19. Recombinant bovine growth hormone-induced reduction of atrial natriuretic peptide is associated with improved left ventricular contractility and reverse remodeling in cardiomyopathic UM-X7.1 hamsters with congestive heart failure. Mulumba M, Céméus C, Dumont L, du Souich P, Ong H, Marleau S. Growth Horm IGF Res; 2007 Apr 25; 17(2):96-103. PubMed ID: 17280860 [Abstract] [Full Text] [Related]
20. Apoptosis and oncosis in the early progression of left ventricular dysfunction in the cardiomyopathic hamster. Ryoke T, Gu Y, Ikeda Y, Martone ME, Oh SS, Jeon ES, Knowlton KU, Ross J. Basic Res Cardiol; 2002 Jan 25; 97(1):65-75. PubMed ID: 12004790 [Abstract] [Full Text] [Related] Page: [Next] [New Search]