These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


267 related items for PubMed ID: 9794228

  • 21. Roles of Eph receptors and ephrins in segmental patterning.
    Xu Q, Mellitzer G, Wilkinson DG.
    Philos Trans R Soc Lond B Biol Sci; 2000 Jul 29; 355(1399):993-1002. PubMed ID: 11128993
    [Abstract] [Full Text] [Related]

  • 22. Coexpression of transcripts encoding EPHB receptor protein tyrosine kinases and their ephrin-B ligands in human small cell lung carcinoma.
    Tang XX, Brodeur GM, Campling BG, Ikegaki N.
    Clin Cancer Res; 1999 Feb 29; 5(2):455-60. PubMed ID: 10037197
    [Abstract] [Full Text] [Related]

  • 23. The N-terminal globular domain of Eph receptors is sufficient for ligand binding and receptor signaling.
    Labrador JP, Brambilla R, Klein R.
    EMBO J; 1997 Jul 01; 16(13):3889-97. PubMed ID: 9233799
    [Abstract] [Full Text] [Related]

  • 24. Dorsalization and neural induction: properties of the organizer in Xenopus laevis.
    Smith JC, Slack JM.
    J Embryol Exp Morphol; 1983 Dec 01; 78():299-317. PubMed ID: 6663230
    [Abstract] [Full Text] [Related]

  • 25. In vivo tyrosine phosphorylation sites of activated ephrin-B1 and ephB2 from neural tissue.
    Kalo MS, Yu HH, Pasquale EB.
    J Biol Chem; 2001 Oct 19; 276(42):38940-8. PubMed ID: 11466320
    [Abstract] [Full Text] [Related]

  • 26. EphB2-mediated interactions are essential for proper migration of T cell progenitors during fetal thymus colonization.
    Stimamiglio MA, Jiménez E, Silva-Barbosa SD, Alfaro D, García-Ceca JJ, Muñoz JJ, Cejalvo T, Savino W, Zapata A.
    J Leukoc Biol; 2010 Sep 19; 88(3):483-94. PubMed ID: 20504947
    [Abstract] [Full Text] [Related]

  • 27.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 28. Tiam1 mediates neurite outgrowth induced by ephrin-B1 and EphA2.
    Tanaka M, Ohashi R, Nakamura R, Shinmura K, Kamo T, Sakai R, Sugimura H.
    EMBO J; 2004 Mar 10; 23(5):1075-88. PubMed ID: 14988728
    [Abstract] [Full Text] [Related]

  • 29. EphB2 and ephrin-B2 regulate the ionic homeostasis of vestibular endolymph.
    Dravis C, Wu T, Chumley MJ, Yokoyama N, Wei S, Wu DK, Marcus DC, Henkemeyer M.
    Hear Res; 2007 Jan 10; 223(1-2):93-104. PubMed ID: 17158005
    [Abstract] [Full Text] [Related]

  • 30. Ligands for the receptor tyrosine kinases hek and elk: isolation of cDNAs encoding a family of proteins.
    Kozlosky CJ, Maraskovsky E, McGrew JT, VandenBos T, Teepe M, Lyman SD, Srinivasan S, Fletcher FA, Gayle RB, Cerretti DP.
    Oncogene; 1995 Jan 19; 10(2):299-306. PubMed ID: 7838529
    [Abstract] [Full Text] [Related]

  • 31. Docking protein SNT1 is a critical mediator of fibroblast growth factor signaling during Xenopus embryonic development.
    Akagi K, Kyun Park E, Mood K, Daar IO.
    Dev Dyn; 2002 Mar 19; 223(2):216-28. PubMed ID: 11836786
    [Abstract] [Full Text] [Related]

  • 32. Elk-L3, a novel transmembrane ligand for the Eph family of receptor tyrosine kinases, expressed in embryonic floor plate, roof plate and hindbrain segments.
    Gale NW, Flenniken A, Compton DC, Jenkins N, Copeland NG, Gilbert DJ, Davis S, Wilkinson DG, Yancopoulos GD.
    Oncogene; 1996 Sep 19; 13(6):1343-52. PubMed ID: 8808709
    [Abstract] [Full Text] [Related]

  • 33. Crystal structure of the ephrin-B1 ectodomain: implications for receptor recognition and signaling.
    Nikolov DB, Li C, Barton WA, Himanen JP.
    Biochemistry; 2005 Aug 23; 44(33):10947-53. PubMed ID: 16101278
    [Abstract] [Full Text] [Related]

  • 34. Regulation of repulsion versus adhesion by different splice forms of an Eph receptor.
    Holmberg J, Clarke DL, Frisén J.
    Nature; 2000 Nov 09; 408(6809):203-6. PubMed ID: 11089974
    [Abstract] [Full Text] [Related]

  • 35. Replacing two conserved tyrosines of the EphB2 receptor with glutamic acid prevents binding of SH2 domains without abrogating kinase activity and biological responses.
    Zisch AH, Pazzagli C, Freeman AL, Schneller M, Hadman M, Smith JW, Ruoslahti E, Pasquale EB.
    Oncogene; 2000 Jan 13; 19(2):177-87. PubMed ID: 10644995
    [Abstract] [Full Text] [Related]

  • 36. FGF is required for posterior neural patterning but not for neural induction.
    Holowacz T, Sokol S.
    Dev Biol; 1999 Jan 15; 205(2):296-308. PubMed ID: 9917365
    [Abstract] [Full Text] [Related]

  • 37. Expression of activated MAP kinase in Xenopus laevis embryos: evaluating the roles of FGF and other signaling pathways in early induction and patterning.
    Curran KL, Grainger RM.
    Dev Biol; 2000 Dec 01; 228(1):41-56. PubMed ID: 11087625
    [Abstract] [Full Text] [Related]

  • 38. Expression and function of ephrin-B1 and its cognate receptor EphB2 in human atherosclerosis: from an aspect of chemotaxis.
    Sakamoto A, Ishibashi-Ueda H, Sugamoto Y, Higashikata T, Miyamoto S, Kawashiri MA, Yagi K, Konno T, Hayashi K, Fujino N, Ino H, Takeda Y, Yamagishi M.
    Clin Sci (Lond); 2008 May 01; 114(10):643-50. PubMed ID: 18092944
    [Abstract] [Full Text] [Related]

  • 39. Developmental analysis of activin-like kinase receptor-4 (ALK4) expression in Xenopus laevis.
    Chen Y, Whitaker LL, Ramsdell AF.
    Dev Dyn; 2005 Feb 01; 232(2):393-8. PubMed ID: 15614766
    [Abstract] [Full Text] [Related]

  • 40. Complementary and layered expression of Ephs and ephrins in developing mouse inner ear.
    Pickles JO, Claxton C, Van Heumen WR.
    J Comp Neurol; 2002 Jul 29; 449(3):207-16. PubMed ID: 12115675
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 14.