These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


184 related items for PubMed ID: 9795284

  • 21. Effects of nimesulide and its reduced metabolite on mitochondria.
    Mingatto FE, dos Santos AC, Rodrigues T, Pigoso AA, Uyemura SA, Curti C.
    Br J Pharmacol; 2000 Nov; 131(6):1154-60. PubMed ID: 11082123
    [Abstract] [Full Text] [Related]

  • 22. [A simple registering single beam fluorometer for recording of redox changes in mitochondrial pyridine nucleotides].
    Kunz W, Böhme G.
    Acta Biol Med Ger; 1969 Nov; 22(3):643-51. PubMed ID: 4391413
    [No Abstract] [Full Text] [Related]

  • 23.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 24. Heterogeneity of reduced pyridine nucleotide-tetrazolium reductase system in rat liver. A quantitative histochemical study.
    Kalina M.
    Lab Invest; 1968 Mar; 18(3):278-82. PubMed ID: 4384877
    [No Abstract] [Full Text] [Related]

  • 25. Regulation of Ca2+ release from mitochondria by the oxidation-reduction state of pyridine nucleotides.
    Lehninger AL, Vercesi A, Bababunmi EA.
    Proc Natl Acad Sci U S A; 1978 Apr; 75(4):1690-4. PubMed ID: 25436
    [Abstract] [Full Text] [Related]

  • 26. Cisplatin impairs rat liver mitochondrial functions by inducing changes on membrane ion permeability: prevention by thiol group protecting agents.
    Custódio JB, Cardoso CM, Santos MS, Almeida LM, Vicente JA, Fernandes MA.
    Toxicology; 2009 May 02; 259(1-2):18-24. PubMed ID: 19428939
    [Abstract] [Full Text] [Related]

  • 27. [Permeability of rat liver mitochondria to mitochondrial aspartate aminotransferase. II. Effect of cycloserine and aminooxyacetate on changes in the rate of oxidation of intramitochondrial NAD(P)H induced by the addition of mAAT].
    Marra E, Doonan S, Saccone C, Quagliariello E.
    Boll Soc Ital Biol Sper; 1976 Sep 15; 52(17):1356-60. PubMed ID: 15575
    [No Abstract] [Full Text] [Related]

  • 28. The participation of NADP, the transmembrane potential and the energy-linked NAD(P) transhydrogenase in the process of Ca2+ efflux from rat liver mitochondria.
    Vercesi AE.
    Arch Biochem Biophys; 1987 Jan 15; 252(1):171-8. PubMed ID: 3813533
    [Abstract] [Full Text] [Related]

  • 29. Hydroperoxide effects on redox state of pyridine nucleotides and Ca2+ retention by mitochondria.
    Richter C.
    Methods Enzymol; 1984 Jan 15; 105():435-41. PubMed ID: 6727679
    [No Abstract] [Full Text] [Related]

  • 30. Role of calcium in the reaction between pyrroloquinoline quinone and pyridine nucleotides monomers and dimers.
    Casini A, Finazzi-Agrò A, Sabatini S, El-Sherbini ES, Tortorella S, Scipione L.
    Arch Biochem Biophys; 1999 Aug 15; 368(2):385-93. PubMed ID: 10441392
    [Abstract] [Full Text] [Related]

  • 31. On the inter-relationship between glucagon action, the oxidation-reduction state of pyridine nucleotides, and calcium retention by rat liver mitochondria.
    Prpić V, Bygrave FL.
    J Biol Chem; 1980 Jul 10; 255(13):6193-9. PubMed ID: 7391016
    [No Abstract] [Full Text] [Related]

  • 32. The effect of cytoplasmic Ca2+ signal on the redox state of mitochondrial pyridine nucleotides.
    Spät A, Pitter JG.
    Mol Cell Endocrinol; 2004 Feb 27; 215(1-2):115-8. PubMed ID: 15026183
    [Abstract] [Full Text] [Related]

  • 33. Intracellular red-ox steady states as basis for cell characterization by flow cytofluorometry.
    Thorell B.
    Blood Cells; 1980 Feb 27; 6(4):745-51. PubMed ID: 7008872
    [Abstract] [Full Text] [Related]

  • 34. Spectroscopic study of hydroxyproline transport in rat kidney mitochondria.
    Atlante A, Passarella S, Quagliariello E.
    Biochem Biophys Res Commun; 1994 Jul 15; 202(1):58-64. PubMed ID: 8037764
    [Abstract] [Full Text] [Related]

  • 35. ATP prevents both hydroperoxide-induced hydrolysis of pyridine nucleotides and release of calcium in rat liver mitochondria.
    Hofstetter W, Mühlebach T, Lötscher HR, Winterhalter KH, Richter C.
    Eur J Biochem; 1981 Jul 15; 117(2):361-7. PubMed ID: 6268408
    [Abstract] [Full Text] [Related]

  • 36. Inhibition of ruthenium red-insensitive mitochondrial Ca2+ release and its pyridine nucleotide specificity.
    Roth Z, Dikstein S.
    Biochem Biophys Res Commun; 1982 Apr 14; 105(3):991-6. PubMed ID: 6178412
    [No Abstract] [Full Text] [Related]

  • 37. Butylated hydroxytoluene prevents cumene hydroperoxide-induced Ca2+ release from liver mitochondria by inhibiting pyridine nucleotide hydrolysis.
    Gogvadze V, Kass GE, Boyer CS, Zhukova A, Kim Y, Orrenius S.
    Biochem Biophys Res Commun; 1992 Jun 15; 185(2):698-704. PubMed ID: 1610362
    [Abstract] [Full Text] [Related]

  • 38. NADP redox state and mitochondrial Ca2+ efflux: a controversial issue.
    Vercesi AE, Pereira-da-Silva L.
    Braz J Med Biol Res; 1984 Jun 15; 17(3-4):353-6. PubMed ID: 6529616
    [Abstract] [Full Text] [Related]

  • 39. Time-resolved single tryptophan fluorescence in photoactive yellow protein monitors changes in the chromophore structure during the photocycle via energy transfer.
    Otto H, Hoersch D, Meyer TE, Cusanovich MA, Heyn MP.
    Biochemistry; 2005 Dec 27; 44(51):16804-16. PubMed ID: 16363794
    [Abstract] [Full Text] [Related]

  • 40. Equilibrium relations between pyridine nucleotides and adenine nucleotides and their roles in the regulation of metabolic processes.
    Krebs HA, Veech RL.
    Adv Enzyme Regul; 1969 Dec 27; 7():397-413. PubMed ID: 4391643
    [No Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 10.