These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Oxidative metabolites of 5-S-cysteinyldopamine inhibit the alpha-ketoglutarate dehydrogenase complex: possible relevance to the pathogenesis of Parkinson's disease. Shen XM, Li H, Dryhurst G. J Neural Transm (Vienna); 2000; 107(8-9):959-78. PubMed ID: 11041275 [Abstract] [Full Text] [Related]
5. Iron- and manganese-catalyzed autoxidation of dopamine in the presence of L-cysteine: possible insights into iron- and manganese-mediated dopaminergic neurotoxicity. Shen XM, Dryhurst G. Chem Res Toxicol; 1998 Jul; 11(7):824-37. PubMed ID: 9671546 [Abstract] [Full Text] [Related]
8. Effects of L-cysteine on the oxidation chemistry of dopamine: new reaction pathways of potential relevance to idiopathic Parkinson's disease. Zhang F, Dryhurst G. J Med Chem; 1994 Apr 15; 37(8):1084-98. PubMed ID: 7909337 [Abstract] [Full Text] [Related]
9. Oxidation of dopamine in the presence of cysteine: characterization of new toxic products. Shen XM, Zhang F, Dryhurst G. Chem Res Toxicol; 1997 Feb 15; 10(2):147-55. PubMed ID: 9049425 [Abstract] [Full Text] [Related]
10. Synthesis, redox properties, in vivo formation, and neurobehavioral effects of N-acetylcysteinyl conjugates of dopamine: possible metabolites of relevance to Parkinson's disease. Shen XM, Xia B, Wrona MZ, Dryhurst G. Chem Res Toxicol; 1996 Feb 15; 9(7):1117-26. PubMed ID: 8902266 [Abstract] [Full Text] [Related]
11. Oxidation chemistry of (-)-norepinephrine in the presence of L-cysteine. Shen XM, Dryhurst G. J Med Chem; 1996 May 10; 39(10):2018-29. PubMed ID: 8642560 [Abstract] [Full Text] [Related]
12. Irreversible inhibition of mitochondrial complex I by 1-methyl-4-phenylpyridinium: evidence for free radical involvement. Cleeter MW, Cooper JM, Schapira AH. J Neurochem; 1992 Feb 10; 58(2):786-9. PubMed ID: 1729421 [Abstract] [Full Text] [Related]
13. Ubiquinone (coenzyme q10) and mitochondria in oxidative stress of parkinson's disease. Ebadi M, Govitrapong P, Sharma S, Muralikrishnan D, Shavali S, Pellett L, Schafer R, Albano C, Eken J. Biol Signals Recept; 2001 Feb 10; 10(3-4):224-53. PubMed ID: 11351130 [Abstract] [Full Text] [Related]
14. Inhibition of rat brain mitochondrial electron transport chain activity by dopamine oxidation products during extended in vitro incubation: implications for Parkinson's disease. Khan FH, Sen T, Maiti AK, Jana S, Chatterjee U, Chakrabarti S. Biochim Biophys Acta; 2005 Jun 30; 1741(1-2):65-74. PubMed ID: 15925494 [Abstract] [Full Text] [Related]
16. Protective and toxic roles of dopamine in Parkinson's disease. Segura-Aguilar J, Paris I, Muñoz P, Ferrari E, Zecca L, Zucca FA. J Neurochem; 2014 Jun 30; 129(6):898-915. PubMed ID: 24548101 [Abstract] [Full Text] [Related]
18. The neurotoxicity of 5-S-cysteinyldopamine is mediated by the early activation of ERK1/2 followed by the subsequent activation of ASK1/JNK1/2 pro-apoptotic signalling. Vauzour D, Pinto JT, Cooper AJ, Spencer JP. Biochem J; 2014 Oct 01; 463(1):41-52. PubMed ID: 24938188 [Abstract] [Full Text] [Related]
19. Inhibition of brain mitochondrial respiration by dopamine: involvement of H(2)O(2) and hydroxyl radicals but not glutathione-protein-mixed disulfides. Gluck M, Ehrhart J, Jayatilleke E, Zeevalk GD. J Neurochem; 2002 Jul 01; 82(1):66-74. PubMed ID: 12091466 [Abstract] [Full Text] [Related]
20. Anatomic and disease specificity of NADH CoQ1 reductase (complex I) deficiency in Parkinson's disease. Schapira AH, Mann VM, Cooper JM, Dexter D, Daniel SE, Jenner P, Clark JB, Marsden CD. J Neurochem; 1990 Dec 01; 55(6):2142-5. PubMed ID: 2121905 [Abstract] [Full Text] [Related] Page: [Next] [New Search]