These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
524 related items for PubMed ID: 9799221
1. Malaria infection of the mosquito Anopheles gambiae activates immune-responsive genes during critical transition stages of the parasite life cycle. Dimopoulos G, Seeley D, Wolf A, Kafatos FC. EMBO J; 1998 Nov 02; 17(21):6115-23. PubMed ID: 9799221 [Abstract] [Full Text] [Related]
2. Salivary gland transcriptome analysis during Plasmodium infection in malaria vector Anopheles stephensi. Dixit R, Sharma A, Mourya DT, Kamaraju R, Patole MS, Shouche YS. Int J Infect Dis; 2009 Sep 02; 13(5):636-46. PubMed ID: 19128996 [Abstract] [Full Text] [Related]
3. How does Anopheles gambiae kill malaria parasites? Dimopoulos G, Müller HM, Kafatos FC. Parassitologia; 1999 Sep 02; 41(1-3):169-75. PubMed ID: 10697851 [Abstract] [Full Text] [Related]
4. The parasite invasion marker SRPN6 reduces sporozoite numbers in salivary glands of Anopheles gambiae. Pinto SB, Kafatos FC, Michel K. Cell Microbiol; 2008 Apr 02; 10(4):891-8. PubMed ID: 18005239 [Abstract] [Full Text] [Related]
5. CTRP is essential for mosquito infection by malaria ookinetes. Dessens JT, Beetsma AL, Dimopoulos G, Wengelnik K, Crisanti A, Kafatos FC, Sinden RE. EMBO J; 1999 Nov 15; 18(22):6221-7. PubMed ID: 10562534 [Abstract] [Full Text] [Related]
6. SAGE analysis of mosquito salivary gland transcriptomes during Plasmodium invasion. Rosinski-Chupin I, Briolay J, Brouilly P, Perrot S, Gomez SM, Chertemps T, Roth CW, Keime C, Gandrillon O, Couble P, Brey PT. Cell Microbiol; 2007 Mar 15; 9(3):708-24. PubMed ID: 17054438 [Abstract] [Full Text] [Related]
7. Midgut specific immune response of vector mosquito Anopheles stephensi to malaria parasite Plasmodium. Gakhar SK, Shandilya HK. Indian J Exp Biol; 2001 Mar 15; 39(3):287-90. PubMed ID: 11495292 [Abstract] [Full Text] [Related]
8. Overexpression and altered nucleocytoplasmic distribution of Anopheles ovalbumin-like SRPN10 serpins in Plasmodium-infected midgut cells. Danielli A, Barillas-Mury C, Kumar S, Kafatos FC, Loukeris TG. Cell Microbiol; 2005 Feb 15; 7(2):181-90. PubMed ID: 15659062 [Abstract] [Full Text] [Related]
9. Transcriptome analysis of Anopheles stephensi-Plasmodium berghei interactions. Xu X, Dong Y, Abraham EG, Kocan A, Srinivasan P, Ghosh AK, Sinden RE, Ribeiro JM, Jacobs-Lorena M, Kafatos FC, Dimopoulos G. Mol Biochem Parasitol; 2005 Jul 15; 142(1):76-87. PubMed ID: 15907562 [Abstract] [Full Text] [Related]
10. Differential gene expression in the ookinete stage of the malaria parasite Plasmodium berghei. Raibaud A, Brahimi K, Roth CW, Brey PT, Faust DM. Mol Biochem Parasitol; 2006 Nov 15; 150(1):107-13. PubMed ID: 16908078 [Abstract] [Full Text] [Related]
11. Targeting Plasmodium ligands on mosquito salivary glands and midgut with a phage display peptide library. Ghosh AK, Ribolla PE, Jacobs-Lorena M. Proc Natl Acad Sci U S A; 2001 Nov 06; 98(23):13278-81. PubMed ID: 11687659 [Abstract] [Full Text] [Related]
12. Molecular and phylogenetic analysis of a novel salivary defensin cDNA from malaria vector Anopheles stephensi. Dixit R, Sharma A, Patole MS, Shouche YS. Acta Trop; 2008 Apr 06; 106(1):75-9. PubMed ID: 18275930 [Abstract] [Full Text] [Related]