These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


237 related items for PubMed ID: 9799233

  • 1. Stimulation of phospholipase C-beta2 by the Rho GTPases Cdc42Hs and Rac1.
    Illenberger D, Schwald F, Pimmer D, Binder W, Maier G, Dietrich A, Gierschik P.
    EMBO J; 1998 Nov 02; 17(21):6241-9. PubMed ID: 9799233
    [Abstract] [Full Text] [Related]

  • 2. Investigation of the GTP-binding/GTPase cycle of Cdc42Hs using extrinsic reporter group fluorescence.
    Nomanbhoy TK, Leonard DA, Manor D, Cerione RA.
    Biochemistry; 1996 Apr 09; 35(14):4602-8. PubMed ID: 8605211
    [Abstract] [Full Text] [Related]

  • 3. Glucosylation and ADP ribosylation of rho proteins: effects on nucleotide binding, GTPase activity, and effector coupling.
    Sehr P, Joseph G, Genth H, Just I, Pick E, Aktories K.
    Biochemistry; 1998 Apr 14; 37(15):5296-304. PubMed ID: 9548761
    [Abstract] [Full Text] [Related]

  • 4. Use of a fluorescence spectroscopic readout to characterize the interactions of Cdc42Hs with its target/effector, mPAK-3.
    Leonard DA, Satoskar RS, Wu WJ, Bagrodia S, Cerione RA, Manor D.
    Biochemistry; 1997 Feb 04; 36(5):1173-80. PubMed ID: 9033409
    [Abstract] [Full Text] [Related]

  • 5. How Vav proteins discriminate the GTPases Rac1 and RhoA from Cdc42.
    Movilla N, Dosil M, Zheng Y, Bustelo XR.
    Oncogene; 2001 Dec 06; 20(56):8057-65. PubMed ID: 11781818
    [Abstract] [Full Text] [Related]

  • 6. Characterization and purification from bovine neutrophils of a soluble guanine-nucleotide-binding protein that mediates isozyme-specific stimulation of phospholipase C beta2.
    Illenberger D, Schwald F, Gierschik P.
    Eur J Biochem; 1997 May 15; 246(1):71-7. PubMed ID: 9210467
    [Abstract] [Full Text] [Related]

  • 7. Cellular functions of TC10, a Rho family GTPase: regulation of morphology, signal transduction and cell growth.
    Murphy GA, Solski PA, Jillian SA, Pérez de la Ossa P, D'Eustachio P, Der CJ, Rush MG.
    Oncogene; 1999 Jul 01; 18(26):3831-45. PubMed ID: 10445846
    [Abstract] [Full Text] [Related]

  • 8. Identification and functional reconstitution of effector proteins for the GTPases Rac and CDC42Hs.
    Abo A.
    Methods Mol Biol; 1998 Jul 01; 84():163-72. PubMed ID: 9666448
    [No Abstract] [Full Text] [Related]

  • 9. A balance of signaling by Rho family small GTPases RhoA, Rac1 and Cdc42 coordinates cytoskeletal morphology but not cell survival.
    Moorman JP, Luu D, Wickham J, Bobak DA, Hahn CS.
    Oncogene; 1999 Jan 07; 18(1):47-57. PubMed ID: 9926919
    [Abstract] [Full Text] [Related]

  • 10. PLC-epsilon: a shared effector protein in Ras-, Rho-, and G alpha beta gamma-mediated signaling.
    Wing MR, Bourdon DM, Harden TK.
    Mol Interv; 2003 Aug 07; 3(5):273-80. PubMed ID: 14993441
    [Abstract] [Full Text] [Related]

  • 11. Crystal structure of Rac1 bound to its effector phospholipase C-beta2.
    Jezyk MR, Snyder JT, Gershberg S, Worthylake DK, Harden TK, Sondek J.
    Nat Struct Mol Biol; 2006 Dec 07; 13(12):1135-40. PubMed ID: 17115053
    [Abstract] [Full Text] [Related]

  • 12. A novel Rho GTPase-activating-protein interacts with Gem, a member of the Ras superfamily of GTPases.
    Aresta S, de Tand-Heim MF, Béranger F, de Gunzburg J.
    Biochem J; 2002 Oct 01; 367(Pt 1):57-65. PubMed ID: 12093360
    [Abstract] [Full Text] [Related]

  • 13. Structure at 1.65 A of RhoA and its GTPase-activating protein in complex with a transition-state analogue.
    Rittinger K, Walker PA, Eccleston JF, Smerdon SJ, Gamblin SJ.
    Nature; 1997 Oct 16; 389(6652):758-62. PubMed ID: 9338791
    [Abstract] [Full Text] [Related]

  • 14. IQGAP1, a calmodulin-binding protein with a rasGAP-related domain, is a potential effector for cdc42Hs.
    Hart MJ, Callow MG, Souza B, Polakis P.
    EMBO J; 1996 Jun 17; 15(12):2997-3005. PubMed ID: 8670801
    [Abstract] [Full Text] [Related]

  • 15. C-terminal binding domain of Rho GDP-dissociation inhibitor directs N-terminal inhibitory peptide to GTPases.
    Gosser YQ, Nomanbhoy TK, Aghazadeh B, Manor D, Combs C, Cerione RA, Rosen MK.
    Nature; 1997 Jun 19; 387(6635):814-9. PubMed ID: 9194563
    [Abstract] [Full Text] [Related]

  • 16. Biochemical analyses of the Wrch atypical Rho family GTPases.
    Shutes A, Berzat AC, Chenette EJ, Cox AD, Der CJ.
    Methods Enzymol; 2006 Jun 19; 406():11-26. PubMed ID: 16472646
    [Abstract] [Full Text] [Related]

  • 17. Phosphatidylinositol 4,5-bisphosphate provides an alternative to guanine nucleotide exchange factors by stimulating the dissociation of GDP from Cdc42Hs.
    Zheng Y, Glaven JA, Wu WJ, Cerione RA.
    J Biol Chem; 1996 Sep 27; 271(39):23815-9. PubMed ID: 8798610
    [Abstract] [Full Text] [Related]

  • 18. A non-receptor tyrosine kinase that inhibits the GTPase activity of p21cdc42.
    Manser E, Leung T, Salihuddin H, Tan L, Lim L.
    Nature; 1993 May 27; 363(6427):364-7. PubMed ID: 8497321
    [Abstract] [Full Text] [Related]

  • 19. Structure of Cdc42 in complex with the GTPase-binding domain of the 'Wiskott-Aldrich syndrome' protein.
    Abdul-Manan N, Aghazadeh B, Liu GA, Majumdar A, Ouerfelli O, Siminovitch KA, Rosen MK.
    Nature; 1999 May 27; 399(6734):379-83. PubMed ID: 10360578
    [Abstract] [Full Text] [Related]

  • 20. Guanine nucleotides protect Rho proteins from endogenous proteolytic degradation in renal membranes.
    Desrosiers RR, Gauthier F, Lin W, Béliveau R.
    Biochem Cell Biol; 1998 May 27; 76(1):63-72. PubMed ID: 9666307
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 12.