These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
230 related items for PubMed ID: 9799487
1. Allostery in rabbit pyruvate kinase: development of a strategy to elucidate the mechanism. Friesen RH, Castellani RJ, Lee JC, Braun W. Biochemistry; 1998 Nov 03; 37(44):15266-76. PubMed ID: 9799487 [Abstract] [Full Text] [Related]
2. Structural and functional linkages between subunit interfaces in mammalian pyruvate kinase. Wooll JO, Friesen RH, White MA, Watowich SJ, Fox RO, Lee JC, Czerwinski EW. J Mol Biol; 2001 Sep 21; 312(3):525-40. PubMed ID: 11563914 [Abstract] [Full Text] [Related]
3. Interfacial communications in recombinant rabbit kidney pyruvate kinase. Friesen RH, Chin AJ, Ledman DW, Lee JC. Biochemistry; 1998 Mar 03; 37(9):2949-60. PubMed ID: 9485447 [Abstract] [Full Text] [Related]
4. The monovalent cation requirement of rabbit muscle pyruvate kinase is eliminated by substitution of lysine for glutamate 117. Laughlin LT, Reed GH. Arch Biochem Biophys; 1997 Dec 15; 348(2):262-7. PubMed ID: 9434737 [Abstract] [Full Text] [Related]
5. Structural and functional energetic linkages in allosteric regulation of muscle pyruvate kinase. Lee JC, Herman P. Methods Enzymol; 2011 Dec 15; 488():185-217. PubMed ID: 21195229 [Abstract] [Full Text] [Related]
6. The structure of pyruvate kinase from Leishmania mexicana reveals details of the allosteric transition and unusual effector specificity. Rigden DJ, Phillips SE, Michels PA, Fothergill-Gilmore LA. J Mol Biol; 1999 Aug 20; 291(3):615-35. PubMed ID: 10448041 [Abstract] [Full Text] [Related]
7. Role of lysine 240 in the mechanism of yeast pyruvate kinase catalysis. Bollenbach TJ, Mesecar AD, Nowak T. Biochemistry; 1999 Jul 13; 38(28):9137-45. PubMed ID: 10413488 [Abstract] [Full Text] [Related]
9. Evidence for an active T-state pig kidney fructose 1,6-bisphosphatase: interface residue Lys-42 is important for allosteric inhibition and AMP cooperativity. Lu G, Stec B, Giroux EL, Kantrowitz ER. Protein Sci; 1996 Nov 12; 5(11):2333-42. PubMed ID: 8931152 [Abstract] [Full Text] [Related]
10. Crystal structure of Escherichia coli pyruvate kinase type I: molecular basis of the allosteric transition. Mattevi A, Valentini G, Rizzi M, Speranza ML, Bolognesi M, Coda A. Structure; 1995 Jul 15; 3(7):729-41. PubMed ID: 8591049 [Abstract] [Full Text] [Related]
11. Kinetic and allosteric consequences of mutations in the subunit and domain interfaces and the allosteric site of yeast pyruvate kinase. Fenton AW, Blair JB. Arch Biochem Biophys; 2002 Jan 01; 397(1):28-39. PubMed ID: 11747307 [Abstract] [Full Text] [Related]
12. Functional analysis, overexpression, and kinetic characterization of pyruvate kinase from methicillin-resistant Staphylococcus aureus. Zoraghi R, See RH, Gong H, Lian T, Swayze R, Finlay BB, Brunham RC, McMaster WR, Reiner NE. Biochemistry; 2010 Sep 07; 49(35):7733-47. PubMed ID: 20707314 [Abstract] [Full Text] [Related]
13. The quaternary structure of pyruvate kinase type 1 from Escherichia coli at low nanomolar concentrations. Zhu T, Bailey MF, Angley LM, Cooper TF, Dobson RC. Biochimie; 2010 Jan 07; 92(1):116-20. PubMed ID: 19800933 [Abstract] [Full Text] [Related]
14. Rabbit muscle creatine kinase: consequences of the mutagenesis of conserved histidine residues. Chen LH, Borders CL, Vásquez JR, Kenyon GL. Biochemistry; 1996 Jun 18; 35(24):7895-902. PubMed ID: 8672491 [Abstract] [Full Text] [Related]
15. Effects of conserved residues on the regulation of rabbit muscle pyruvate kinase. Cheng X, Friesen RH, Lee JC. J Biol Chem; 1996 Mar 15; 271(11):6313-21. PubMed ID: 8626426 [Abstract] [Full Text] [Related]
16. Pyruvate kinase of Trypanosoma brucei: overexpression, purification, and functional characterization of wild-type and mutated enzyme. Ernest I, Callens M, Uttaro AD, Chevalier N, Opperdoes FR, Muirhead H, Michels PA. Protein Expr Purif; 1998 Aug 15; 13(3):373-82. PubMed ID: 9693062 [Abstract] [Full Text] [Related]
17. Characterization of point mutations in patients with pyruvate dehydrogenase deficiency: role of methionine-181, proline-188, and arginine-349 in the alpha subunit. Tripatara A, Korotchkina LG, Patel MS. Arch Biochem Biophys; 1999 Jul 01; 367(1):39-50. PubMed ID: 10375397 [Abstract] [Full Text] [Related]
18. On the role of the conformational flexibility of the active-site lid on the allosteric kinetics of glucosamine-6-phosphate deaminase. Bustos-Jaimes I, Sosa-Peinado A, Rudiño-Piñera E, Horjales E, Calcagno ML. J Mol Biol; 2002 May 24; 319(1):183-9. PubMed ID: 12051945 [Abstract] [Full Text] [Related]
19. Dual roles of Lys(57) at the dimer interface of human mitochondrial NAD(P)+-dependent malic enzyme. Hsieh JY, Liu JH, Fang YW, Hung HC. Biochem J; 2009 May 13; 420(2):201-9. PubMed ID: 19236308 [Abstract] [Full Text] [Related]
20. Tyr254 hydroxyl group acts as a two-way switch mechanism in the coupling of heterotropic and homotropic effects in Escherichia coli glucosamine-6-phosphate deaminase. Montero-Morán GM, Horjales E, Calcagno ML, Altamirano MM. Biochemistry; 1998 May 26; 37(21):7844-9. PubMed ID: 9601045 [Abstract] [Full Text] [Related] Page: [Next] [New Search]