These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
366 related items for PubMed ID: 9804655
1. Potent sigma1-receptor ligand 4-phenyl-1-(4-phenylbutyl) piperidine modulates basal and N-methyl-D-aspartate-evoked nitric oxide production in vivo. Bhardwaj A, Sawada M, London ED, Koehler RC, Traystman RJ, Kirsch JR. Stroke; 1998 Nov; 29(11):2404-10; discussion 2411. PubMed ID: 9804655 [Abstract] [Full Text] [Related]
2. Characterization of ionotropic glutamate receptor-mediated nitric oxide production in vivo in rats. Bhardwaj A, Northington FJ, Ichord RN, Hanley DF, Traystman RJ, Koehler RC. Stroke; 1997 Apr; 28(4):850-6; discussion 856-7. PubMed ID: 9099207 [Abstract] [Full Text] [Related]
3. Characterization of metabotropic glutamate receptor-mediated nitric oxide production in vivo. Bhardwaj A, Northington FJ, Martin LJ, Hanley DF, Traystman RJ, Koehler RC. J Cereb Blood Flow Metab; 1997 Feb; 17(2):153-60. PubMed ID: 9040494 [Abstract] [Full Text] [Related]
8. Potent sigma 1-receptor ligand 4-phenyl-1-(4-phenylbutyl) piperidine provides ischemic neuroprotection without altering dopamine accumulation in vivo in rats. Goyagi T, Bhardwaj A, Koehler RC, Traystman RJ, Hurn PD, Kirsch JR. Anesth Analg; 2003 Feb; 96(2):532-8, table of contents. PubMed ID: 12538208 [Abstract] [Full Text] [Related]
9. Inhibition of protein synthesis by activation of NMDA receptors in cultured retinal cells: a new mechanism for the regulation of nitric oxide production. Cossenza M, Cadilhe DV, Coutinho RN, Paes-de-Carvalho R. J Neurochem; 2006 Jun; 97(5):1481-93. PubMed ID: 16606372 [Abstract] [Full Text] [Related]
12. NMDA and kainate-evoked release of nitric oxide and classical transmitters in the rat striatum: in vivo evidence that nitric oxide may play a neuroprotective role. Kendrick KM, Guevara-Guzman R, de la Riva C, Christensen J, Ostergaard K, Emson PC. Eur J Neurosci; 1996 Dec; 8(12):2619-34. PubMed ID: 8996812 [Abstract] [Full Text] [Related]
13. [Glutamatergic regulation of citrulline extracellular level in the nucleus accumbens during acquisition and expression of conditioned emotional response]. Saul'skaia NB, Fofonova NV, Savel'ev SA. Ross Fiziol Zh Im I M Sechenova; 2007 Jun; 93(6):635-42. PubMed ID: 17850021 [Abstract] [Full Text] [Related]
17. Involvement of N-methyl-D-aspartate receptors and nitric oxide in the rostral ventromedial medulla in modulating morphine pain-inhibitory signals from the periaqueductal grey matter in rats. Javanmardi K, Parviz M, Sadr SS, Keshavarz M, Minaii B, Dehpour AR. Clin Exp Pharmacol Physiol; 2005 Jul; 32(7):585-9. PubMed ID: 16026519 [Abstract] [Full Text] [Related]
18. NMDA receptor activation induces glutamate release through nitric oxide synthesis in guinea pig dentate gyrus. Nei K, Matsuyama S, Shuntoh H, Tanaka C. Brain Res; 1996 Jul 22; 728(1):105-10. PubMed ID: 8864303 [Abstract] [Full Text] [Related]
19. The role of N-methyl-D-aspartate receptors and nitric oxide in cochlear dopamine release. Halmos G, Horváth T, Polony G, Fekete A, Kittel A, Vizi ES, van der Laan BF, Zelles T, Lendvai B. Neuroscience; 2008 Jun 23; 154(2):796-803. PubMed ID: 18462886 [Abstract] [Full Text] [Related]
20. Regulatory role of nitric oxide over extracellular taurine in the hippocampus of freely moving rats. Watts J, Segieth J, Pearce B, Whitton PS. Neurosci Lett; 2004 Mar 11; 357(3):179-82. PubMed ID: 15003279 [Abstract] [Full Text] [Related] Page: [Next] [New Search]