These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


207 related items for PubMed ID: 9808285

  • 1. Caulerpenyne interferes with microtubule-dependent events during the first mitotic cycle of sea urchin eggs.
    Pesando D, Huitorel P, Dolcini V, Amade P, Girard JP.
    Eur J Cell Biol; 1998 Sep; 77(1):19-26. PubMed ID: 9808285
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Centrosome structure and function is altered by chloral hydrate and diazepam during the first reproductive cell cycles in sea urchin eggs.
    Schatten H, Chakrabarti A.
    Eur J Cell Biol; 1998 Jan; 75(1):9-20. PubMed ID: 9523150
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Selective inhibition of cytokinesis in sea urchin embryos by low concentrations of stypoldione, a marine natural product that reacts with sulfhydryl groups.
    O'Brien ET, Asai DJ, Jacobs RS, Wilson L.
    Mol Pharmacol; 1989 May; 35(5):635-42. PubMed ID: 2725473
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Dithiothreitol prevents membrane fusion but not centrosome or microtubule organization during the first cell cycles in sea urchins.
    Schatten H.
    Cell Motil Cytoskeleton; 1994 May; 27(1):59-68. PubMed ID: 8194110
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Structure-activity relationship for bromoindole carbaldehydes: effects on the sea urchin embryo cell cycle.
    Moubax I, Bontemps-Subielos N, Banaigs B, Combaut G, Huitorel P, Girard JP, Pesando D.
    Environ Toxicol Chem; 2001 Mar; 20(3):589-96. PubMed ID: 11349861
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Microtubules are required for centrosome expansion and positioning while microfilaments are required for centrosome separation in sea urchin eggs during fertilization and mitosis.
    Schatten H, Walter M, Biessmann H, Schatten G.
    Cell Motil Cytoskeleton; 1988 Mar; 11(4):248-59. PubMed ID: 3064924
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Protein tyrosine phosphorylation during sea urchin fertilization: microtubule dynamics require tyrosine kinase activity.
    Wright SJ, Schatten G.
    Cell Motil Cytoskeleton; 1995 Mar; 30(2):122-35. PubMed ID: 7606805
    [Abstract] [Full Text] [Related]

  • 18. Inhibition of cysteine protease activity disturbs DNA replication and prevents mitosis in the early mitotic cell cycles of sea urchin embryos.
    Concha C, Monardes A, Even Y, Morin V, Puchi M, Imschenetzky M, Genevière AM.
    J Cell Physiol; 2005 Aug; 204(2):693-703. PubMed ID: 15795898
    [Abstract] [Full Text] [Related]

  • 19. Mitotic patterns and DNA synthesis in dinitrophenol-treated sea urchin eggs.
    Kojima MK, Czihak GK.
    Eur J Cell Biol; 1990 Jun; 52(1):129-34. PubMed ID: 2387303
    [Abstract] [Full Text] [Related]

  • 20. Dependence of timing of mitotic events on the rate of protein synthesis and DNA replication in sea urchin early cleavages.
    Yamada K.
    Cell Prolif; 1998 Jun; 31(5-6):203-15. PubMed ID: 9925988
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.