These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


282 related items for PubMed ID: 9818355

  • 1. Growth, natural relationships, cellular fatty acids and metabolic adaptation of sulfate-reducing bacteria that utilize long-chain alkanes under anoxic conditions.
    Aeckersberg F, Rainey FA, Widdel F.
    Arch Microbiol; 1998 Oct; 170(5):361-9. PubMed ID: 9818355
    [Abstract] [Full Text] [Related]

  • 2. Anaerobic transformation of alkanes to fatty acids by a sulfate-reducing bacterium, strain Hxd3.
    So CM, Phelps CD, Young LY.
    Appl Environ Microbiol; 2003 Jul; 69(7):3892-900. PubMed ID: 12839758
    [Abstract] [Full Text] [Related]

  • 3. Initial reactions in anaerobic alkane degradation by a sulfate reducer, strain AK-01.
    So CM, Young LY.
    Appl Environ Microbiol; 1999 Dec; 65(12):5532-40. PubMed ID: 10584014
    [Abstract] [Full Text] [Related]

  • 4. Anaerobic n-alkane metabolism by a sulfate-reducing bacterium, Desulfatibacillum aliphaticivorans strain CV2803T.
    Cravo-Laureau C, Grossi V, Raphel D, Matheron R, Hirschler-Réa A.
    Appl Environ Microbiol; 2005 Jul; 71(7):3458-67. PubMed ID: 16000749
    [Abstract] [Full Text] [Related]

  • 5. Isolation and characterization of a sulfate-reducing bacterium that anaerobically degrades alkanes.
    So CM, Young LY.
    Appl Environ Microbiol; 1999 Jul; 65(7):2969-76. PubMed ID: 10388691
    [Abstract] [Full Text] [Related]

  • 6. Anaerobic 1-alkene metabolism by the alkane- and alkene-degrading sulfate reducer Desulfatibacillum aliphaticivorans strain CV2803T.
    Grossi V, Cravo-Laureau C, Méou A, Raphel D, Garzino F, Hirschler-Réa A.
    Appl Environ Microbiol; 2007 Dec; 73(24):7882-90. PubMed ID: 17965214
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Anaerobic degradation of ethylbenzene by a new type of marine sulfate-reducing bacterium.
    Kniemeyer O, Fischer T, Wilkes H, Glöckner FO, Widdel F.
    Appl Environ Microbiol; 2003 Feb; 69(2):760-8. PubMed ID: 12570993
    [Abstract] [Full Text] [Related]

  • 9. Anaerobic oxidation of short-chain hydrocarbons by marine sulphate-reducing bacteria.
    Kniemeyer O, Musat F, Sievert SM, Knittel K, Wilkes H, Blumenberg M, Michaelis W, Classen A, Bolm C, Joye SB, Widdel F.
    Nature; 2007 Oct 18; 449(7164):898-901. PubMed ID: 17882164
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Growth and cellular fatty-acid composition of a sulphate-reducing bacterium, Desulfatibacillum aliphaticivorans strain CV2803T, grown on n-alkenes.
    Cravo-Laureau C, Hirschler-Réa A, Matheron R, Grossi V.
    C R Biol; 2004 Jul 18; 327(7):687-94. PubMed ID: 15344818
    [Abstract] [Full Text] [Related]

  • 12. Bacteria from hydrocarbon seep areas growing on short-chain alkanes.
    Muyzer G, van der Kraan GM.
    Trends Microbiol; 2008 Apr 18; 16(4):138-41. PubMed ID: 18328711
    [Abstract] [Full Text] [Related]

  • 13. Alkane biodegradation and dynamics of phylogenetic subgroups of sulfate-reducing bacteria in an anoxic coastal marine sediment artificially contaminated with oil.
    Miralles G, Grossi V, Acquaviva M, Duran R, Claude Bertrand J, Cuny P.
    Chemosphere; 2007 Jul 18; 68(7):1327-34. PubMed ID: 17337033
    [Abstract] [Full Text] [Related]

  • 14. Microbial assimilation of hydrocarbons. I. Fatty acids derived from normal alkanes.
    Makula R, Finnerty WR.
    J Bacteriol; 1968 Jun 18; 95(6):2102-7. PubMed ID: 5669891
    [Abstract] [Full Text] [Related]

  • 15. A comparison of stable-isotope probing of DNA and phospholipid fatty acids to study prokaryotic functional diversity in sulfate-reducing marine sediment enrichment slurries.
    Webster G, Watt LC, Rinna J, Fry JC, Evershed RP, Parkes RJ, Weightman AJ.
    Environ Microbiol; 2006 Sep 18; 8(9):1575-89. PubMed ID: 16913918
    [Abstract] [Full Text] [Related]

  • 16. Comparison of mechanisms of alkane metabolism under sulfate-reducing conditions among two bacterial isolates and a bacterial consortium.
    Callaghan AV, Gieg LM, Kropp KG, Suflita JM, Young LY.
    Appl Environ Microbiol; 2006 Jun 18; 72(6):4274-82. PubMed ID: 16751542
    [Abstract] [Full Text] [Related]

  • 17. Dissimilatory arsenate and sulfate reduction in Desulfotomaculum auripigmentum sp. nov.
    Newman DK, Kennedy EK, Coates JD, Ahmann D, Ellis DJ, Lovley DR, Morel FM.
    Arch Microbiol; 1997 Nov 18; 168(5):380-8. PubMed ID: 9325426
    [Abstract] [Full Text] [Related]

  • 18. Desulfosporosinus meridiei sp. nov., a spore-forming sulfate-reducing bacterium isolated from gasolene-contaminated groundwater.
    Robertson WJ, Bowman JP, Franzmann PD, Mee BJ.
    Int J Syst Evol Microbiol; 2001 Jan 18; 51(Pt 1):133-40. PubMed ID: 11211250
    [Abstract] [Full Text] [Related]

  • 19. Desulfatirhabdium butyrativorans gen. nov., sp. nov., a butyrate-oxidizing, sulfate-reducing bacterium isolated from an anaerobic bioreactor.
    Balk M, Altinbaş M, Rijpstra WI, Sinninghe Damsté JS, Stams AJ.
    Int J Syst Evol Microbiol; 2008 Jan 18; 58(Pt 1):110-5. PubMed ID: 18175693
    [Abstract] [Full Text] [Related]

  • 20. Anaerobic biodegradation of alkanes by enriched consortia under four different reducing conditions.
    So CM, Young LY.
    Environ Toxicol Chem; 2001 Mar 18; 20(3):473-8. PubMed ID: 11349845
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 15.