These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


282 related items for PubMed ID: 9818355

  • 21. Biodegradation of low-molecular-weight alkanes under mesophilic, sulfate-reducing conditions: metabolic intermediates and community patterns.
    Savage KN, Krumholz LR, Gieg LM, Parisi VA, Suflita JM, Allen J, Philp RP, Elshahed MS.
    FEMS Microbiol Ecol; 2010 Jun; 72(3):485-95. PubMed ID: 20402777
    [Abstract] [Full Text] [Related]

  • 22. Diverse sulfate-reducing bacteria of the Desulfosarcina/Desulfococcus clade are the key alkane degraders at marine seeps.
    Kleindienst S, Herbst FA, Stagars M, von Netzer F, von Bergen M, Seifert J, Peplies J, Amann R, Musat F, Lueders T, Knittel K.
    ISME J; 2014 Oct; 8(10):2029-44. PubMed ID: 24722631
    [Abstract] [Full Text] [Related]

  • 23. Degradation of hydrocarbons by members of the genus Candida. II. Oxidation of n-alkanes and l-alkenes by Candida lipolytica.
    Klug MJ, Markovetz AJ.
    J Bacteriol; 1967 Jun; 93(6):1847-52. PubMed ID: 6025303
    [Abstract] [Full Text] [Related]

  • 24. Cellular fatty acids derived from normal alkanes by Candida rugosa.
    Iida M, Kobayashi H, Iizuka H.
    Z Allg Mikrobiol; 1980 Jun; 20(7):449-57. PubMed ID: 7434793
    [Abstract] [Full Text] [Related]

  • 25. Adaptation of the hydrocarbonoclastic bacterium Alcanivorax borkumensis SK2 to alkanes and toxic organic compounds: a physiological and transcriptomic approach.
    Naether DJ, Slawtschew S, Stasik S, Engel M, Olzog M, Wick LY, Timmis KN, Heipieper HJ.
    Appl Environ Microbiol; 2013 Jul; 79(14):4282-93. PubMed ID: 23645199
    [Abstract] [Full Text] [Related]

  • 26. Interrogation of Chesapeake Bay sediment microbial communities for intrinsic alkane-utilizing potential under anaerobic conditions.
    Johnson JM, Wawrik B, Isom C, Boling WB, Callaghan AV.
    FEMS Microbiol Ecol; 2015 Feb; 91(2):1-14. PubMed ID: 25764556
    [Abstract] [Full Text] [Related]

  • 27. Influence of hydrocarbons and derivatives on the polar lipid fatty acids of an Acinetobacter isolate.
    Patrick MA, Dugan PR.
    J Bacteriol; 1974 Jul; 119(1):76-81. PubMed ID: 4407014
    [Abstract] [Full Text] [Related]

  • 28. The origin of fatty acids in the hydrocarbon-utilizing microorganism Mycobacterium vaccae.
    King DH, Perry JJ.
    Can J Microbiol; 1975 Jan; 21(1):85-9. PubMed ID: 1116040
    [Abstract] [Full Text] [Related]

  • 29. Distribution and sources of aliphatic hydrocarbons and fatty acids in surface sediments of a tropical estuary south west coast of India (Cochin estuary).
    Gireeshkumar TR, Deepulal PM, Chandramohanakumar N.
    Environ Monit Assess; 2015 Mar; 187(3):56. PubMed ID: 25647800
    [Abstract] [Full Text] [Related]

  • 30. Metabolism of alkylbenzenes, alkanes, and other hydrocarbons in anaerobic bacteria.
    Spormann AM, Widdel F.
    Biodegradation; 2000 Mar; 11(2-3):85-105. PubMed ID: 11440245
    [Abstract] [Full Text] [Related]

  • 31. Anaerobic oxidation of alkanes by newly isolated denitrifying bacteria.
    Ehrenreich P, Behrends A, Harder J, Widdel F.
    Arch Microbiol; 2000 Jan; 173(1):58-64. PubMed ID: 10648105
    [Abstract] [Full Text] [Related]

  • 32. Microbial assimilation of hydrocarbons: cellular distribution of fatty acids.
    Makula RA, Finnerty WR.
    J Bacteriol; 1972 Oct; 112(1):398-407. PubMed ID: 5079069
    [Abstract] [Full Text] [Related]

  • 33. Demethylation of dimethylsulfoniopropionate to 3-S-methylmercaptopropionate by marine sulfate-reducing bacteria.
    van der Maarel MJ, Jansen M, Haanstra R, Meijer WG, Hansen TA.
    Appl Environ Microbiol; 1996 Nov; 62(11):3978-84. PubMed ID: 8899985
    [Abstract] [Full Text] [Related]

  • 34.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 35. Anaerobic oxidation of o-xylene, m-xylene, and homologous alkylbenzenes by new types of sulfate-reducing bacteria.
    Harms G, Zengler K, Rabus R, Aeckersberg F, Minz D, Rosselló-Mora R, Widdel F.
    Appl Environ Microbiol; 1999 Mar; 65(3):999-1004. PubMed ID: 10049854
    [Abstract] [Full Text] [Related]

  • 36. Methane formation from long-chain alkanes by anaerobic microorganisms.
    Zengler K, Richnow HH, Rosselló-Mora R, Michaelis W, Widdel F.
    Nature; 1999 Sep 16; 401(6750):266-9. PubMed ID: 10499582
    [Abstract] [Full Text] [Related]

  • 37. Effect of substrate on the fatty acid composition of hydrocarbon-utilizing filamentous fungi.
    Cerniglia CE, Perry JJ.
    J Bacteriol; 1974 Jun 16; 118(3):844-7. PubMed ID: 4829928
    [Abstract] [Full Text] [Related]

  • 38. Anaerobic alkane-degrading strain AK-01 contains two alkylsuccinate synthase genes.
    Callaghan AV, Wawrik B, Ní Chadhain SM, Young LY, Zylstra GJ.
    Biochem Biophys Res Commun; 2008 Feb 01; 366(1):142-8. PubMed ID: 18053803
    [Abstract] [Full Text] [Related]

  • 39. Desulfocella halophila gen. nov., sp. nov., a halophilic, fatty-acid-oxidizing, sulfate-reducing bacterium isolated from sediments of the Great Salt Lake.
    Brandt KK, Patel BK, Ingvorsen K.
    Int J Syst Bacteriol; 1999 Jan 01; 49 Pt 1():193-200. PubMed ID: 10028263
    [Abstract] [Full Text] [Related]

  • 40. Thermodesulfovibrio aggregans sp. nov. and Thermodesulfovibrio thiophilus sp. nov., anaerobic, thermophilic, sulfate-reducing bacteria isolated from thermophilic methanogenic sludge, and emended description of the genus Thermodesulfovibrio.
    Sekiguchi Y, Muramatsu M, Imachi H, Narihiro T, Ohashi A, Harada H, Hanada S, Kamagata Y.
    Int J Syst Evol Microbiol; 2008 Nov 01; 58(Pt 11):2541-8. PubMed ID: 18984690
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 15.