These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


347 related items for PubMed ID: 9822598

  • 1. PAK4, a novel effector for Cdc42Hs, is implicated in the reorganization of the actin cytoskeleton and in the formation of filopodia.
    Abo A, Qu J, Cammarano MS, Dan C, Fritsch A, Baud V, Belisle B, Minden A.
    EMBO J; 1998 Nov 16; 17(22):6527-40. PubMed ID: 9822598
    [Abstract] [Full Text] [Related]

  • 2. Chp, a homologue of the GTPase Cdc42Hs, activates the JNK pathway and is implicated in reorganizing the actin cytoskeleton.
    Aronheim A, Broder YC, Cohen A, Fritsch A, Belisle B, Abo A.
    Curr Biol; 1998 Oct 08; 8(20):1125-8. PubMed ID: 9778532
    [Abstract] [Full Text] [Related]

  • 3. Human Ste20 homologue hPAK1 links GTPases to the JNK MAP kinase pathway.
    Brown JL, Stowers L, Baer M, Trejo J, Coughlin S, Chant J.
    Curr Biol; 1996 May 01; 6(5):598-605. PubMed ID: 8805275
    [Abstract] [Full Text] [Related]

  • 4. Wiskott-Aldrich syndrome protein, a novel effector for the GTPase CDC42Hs, is implicated in actin polymerization.
    Symons M, Derry JM, Karlak B, Jiang S, Lemahieu V, Mccormick F, Francke U, Abo A.
    Cell; 1996 Mar 08; 84(5):723-34. PubMed ID: 8625410
    [Abstract] [Full Text] [Related]

  • 5. A novel serine kinase activated by rac1/CDC42Hs-dependent autophosphorylation is related to PAK65 and STE20.
    Martin GA, Bollag G, McCormick F, Abo A.
    EMBO J; 1995 May 01; 14(9):1970-8. PubMed ID: 7744004
    [Abstract] [Full Text] [Related]

  • 6. Identification and functional reconstitution of effector proteins for the GTPases Rac and CDC42Hs.
    Abo A.
    Methods Mol Biol; 1998 May 01; 84():163-72. PubMed ID: 9666448
    [No Abstract] [Full Text] [Related]

  • 7. Rac and Cdc42 induce actin polymerization and G1 cell cycle progression independently of p65PAK and the JNK/SAPK MAP kinase cascade.
    Lamarche N, Tapon N, Stowers L, Burbelo PD, Aspenström P, Bridges T, Chant J, Hall A.
    Cell; 1996 Nov 01; 87(3):519-29. PubMed ID: 8898204
    [Abstract] [Full Text] [Related]

  • 8. Cellular functions of TC10, a Rho family GTPase: regulation of morphology, signal transduction and cell growth.
    Murphy GA, Solski PA, Jillian SA, Pérez de la Ossa P, D'Eustachio P, Der CJ, Rush MG.
    Oncogene; 1999 Jul 01; 18(26):3831-45. PubMed ID: 10445846
    [Abstract] [Full Text] [Related]

  • 9. Identification of the binding surface on Cdc42Hs for p21-activated kinase.
    Guo W, Sutcliffe MJ, Cerione RA, Oswald RE.
    Biochemistry; 1998 Oct 06; 37(40):14030-7. PubMed ID: 9760238
    [Abstract] [Full Text] [Related]

  • 10. Identification of a putative effector for Cdc42Hs with high sequence similarity to the RasGAP-related protein IQGAP1 and a Cdc42Hs binding partner with similarity to IQGAP2.
    McCallum SJ, Wu WJ, Cerione RA.
    J Biol Chem; 1996 Sep 06; 271(36):21732-7. PubMed ID: 8702968
    [Abstract] [Full Text] [Related]

  • 11. Use of a fluorescence spectroscopic readout to characterize the interactions of Cdc42Hs with its target/effector, mPAK-3.
    Leonard DA, Satoskar RS, Wu WJ, Bagrodia S, Cerione RA, Manor D.
    Biochemistry; 1997 Feb 04; 36(5):1173-80. PubMed ID: 9033409
    [Abstract] [Full Text] [Related]

  • 12. Requirement of p21-activated kinase (PAK) for Salmonella typhimurium-induced nuclear responses.
    Chen LM, Bagrodia S, Cerione RA, Galán JE.
    J Exp Med; 1999 May 03; 189(9):1479-88. PubMed ID: 10224288
    [Abstract] [Full Text] [Related]

  • 13. PAK4 mediates morphological changes through the regulation of GEF-H1.
    Callow MG, Zozulya S, Gishizky ML, Jallal B, Smeal T.
    J Cell Sci; 2005 May 01; 118(Pt 9):1861-72. PubMed ID: 15827085
    [Abstract] [Full Text] [Related]

  • 14. Adenovirus endocytosis requires actin cytoskeleton reorganization mediated by Rho family GTPases.
    Li E, Stupack D, Bokoch GM, Nemerow GR.
    J Virol; 1998 Nov 01; 72(11):8806-12. PubMed ID: 9765425
    [Abstract] [Full Text] [Related]

  • 15. A novel Cdc42Hs mutant induces cellular transformation.
    Lin R, Bagrodia S, Cerione R, Manor D.
    Curr Biol; 1997 Oct 01; 7(10):794-7. PubMed ID: 9368762
    [Abstract] [Full Text] [Related]

  • 16. PAK5, a new brain-specific kinase, promotes neurite outgrowth in N1E-115 cells.
    Dan C, Nath N, Liberto M, Minden A.
    Mol Cell Biol; 2002 Jan 01; 22(2):567-77. PubMed ID: 11756552
    [Abstract] [Full Text] [Related]

  • 17. Cdc42Hs facilitates cytoskeletal reorganization and neurite outgrowth by localizing the 58-kD insulin receptor substrate to filamentous actin.
    Govind S, Kozma R, Monfries C, Lim L, Ahmed S.
    J Cell Biol; 2001 Feb 05; 152(3):579-94. PubMed ID: 11157984
    [Abstract] [Full Text] [Related]

  • 18. RhoG GTPase controls a pathway that independently activates Rac1 and Cdc42Hs.
    Gauthier-Rouvière C, Vignal E, Mériane M, Roux P, Montcourier P, Fort P.
    Mol Biol Cell; 1998 Jun 05; 9(6):1379-94. PubMed ID: 9614181
    [Abstract] [Full Text] [Related]

  • 19. Selective activation of the JNK signaling cascade and c-Jun transcriptional activity by the small GTPases Rac and Cdc42Hs.
    Minden A, Lin A, Claret FX, Abo A, Karin M.
    Cell; 1995 Jun 30; 81(7):1147-57. PubMed ID: 7600582
    [Abstract] [Full Text] [Related]

  • 20. IQGAP1, a calmodulin-binding protein with a rasGAP-related domain, is a potential effector for cdc42Hs.
    Hart MJ, Callow MG, Souza B, Polakis P.
    EMBO J; 1996 Jun 17; 15(12):2997-3005. PubMed ID: 8670801
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 18.