These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


143 related items for PubMed ID: 9830099

  • 1. Methanogenic and perchloroethylene-dechlorinating activity of anaerobic granular sludge.
    Kennes C, Veiga MC, Bhatnagar L.
    Appl Microbiol Biotechnol; 1998 Oct; 50(4):484-8. PubMed ID: 9830099
    [Abstract] [Full Text] [Related]

  • 2. Constitutive dechlorination of chlorinated ethenes by a methanol degrading methanogenic consortium.
    van Eekert MH, Schröder TJ, van Rhee A, Stams AJ, Schraa G, Field JA.
    Bioresour Technol; 2001 Apr; 77(2):163-70. PubMed ID: 11272023
    [Abstract] [Full Text] [Related]

  • 3. Dependence of tetrachloroethylene dechlorination on methanogenic substrate consumption by Methanosarcina sp. strain DCM.
    Fathepure BZ, Boyd SA.
    Appl Environ Microbiol; 1988 Dec; 54(12):2976-80. PubMed ID: 3223763
    [Abstract] [Full Text] [Related]

  • 4. Complete degradation of tetrachloroethene in coupled anoxic and oxic chemostats.
    Gerritse J, Kloetstra G, Borger A, Dalstra G, Alphenaar A, Gottschal JC.
    Appl Microbiol Biotechnol; 1997 Oct; 48(4):553-62. PubMed ID: 9445538
    [Abstract] [Full Text] [Related]

  • 5. Biological reductive dechlorination of tetrachloroethylene and trichloroethylene to ethylene under methanogenic conditions.
    Freedman DL, Gossett JM.
    Appl Environ Microbiol; 1989 Sep; 55(9):2144-51. PubMed ID: 2552919
    [Abstract] [Full Text] [Related]

  • 6. Role of methanogenic and sulfate-reducing bacteria in the reductive dechlorination of tetrachloroethylene in mixed culture.
    Cabirol N, Perrier J, Jacob F, Fouillet B, Chambon P.
    Bull Environ Contam Toxicol; 1996 May; 56(5):817-24. PubMed ID: 8661867
    [No Abstract] [Full Text] [Related]

  • 7. Inhibition of volatile fatty acid production in granular sludge from a UASB reactor.
    Dogan T, Ince O, Oz NA, Ince BK.
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2005 May; 40(3):633-44. PubMed ID: 15756974
    [Abstract] [Full Text] [Related]

  • 8. Hydrogen as an electron donor for dechlorination of tetrachloroethene by an anaerobic mixed culture.
    DiStefano TD, Gossett JM, Zinder SH.
    Appl Environ Microbiol; 1992 Nov; 58(11):3622-9. PubMed ID: 1482184
    [Abstract] [Full Text] [Related]

  • 9. Formate and Hydrogen as Electron Shuttles in Terminal Fermentations in an Oligotrophic Freshwater Lake Sediment.
    Montag D, Schink B.
    Appl Environ Microbiol; 2018 Oct 15; 84(20):. PubMed ID: 30097443
    [Abstract] [Full Text] [Related]

  • 10. Reductive dechlorination of high concentrations of tetrachloroethene to ethene by an anaerobic enrichment culture in the absence of methanogenesis.
    DiStefano TD, Gossett JM, Zinder SH.
    Appl Environ Microbiol; 1991 Aug 15; 57(8):2287-92. PubMed ID: 1768101
    [Abstract] [Full Text] [Related]

  • 11. Role of formate and hydrogen in the degradation of propionate and butyrate by defined suspended cocultures of acetogenic and methanogenic bacteria.
    Stams AJ, Dong X.
    Antonie Van Leeuwenhoek; 1995 Nov 15; 68(4):281-4. PubMed ID: 8821782
    [Abstract] [Full Text] [Related]

  • 12. Biogas process parameters--energetics and kinetics of secondary fermentations in methanogenic biomass degradation.
    Montag D, Schink B.
    Appl Microbiol Biotechnol; 2016 Jan 15; 100(2):1019-26. PubMed ID: 26515561
    [Abstract] [Full Text] [Related]

  • 13. Relative importance of trophic group concentrations during anaerobic degradation of volatile fatty acids.
    Voolapalli RK, Stuckey DC.
    Appl Environ Microbiol; 1999 Nov 15; 65(11):5009-16. PubMed ID: 10543816
    [Abstract] [Full Text] [Related]

  • 14. Comparative study of methanol, butyrate, and hydrogen as electron donors for long-term dechlorination of tetrachloroethene in mixed anerobic cultures.
    Aulenta F, Gossett JM, Papini MP, Rossetti S, Majone M.
    Biotechnol Bioeng; 2005 Sep 20; 91(6):743-53. PubMed ID: 16007584
    [Abstract] [Full Text] [Related]

  • 15. Characterization of metabolic performance of methanogenic granules treating brewery wastewater: role of sulfate-reducing bacteria.
    Wu WM, Hickey RF, Zeikus JG.
    Appl Environ Microbiol; 1991 Dec 20; 57(12):3438-49. PubMed ID: 1785921
    [Abstract] [Full Text] [Related]

  • 16. Kinetics and modeling of reductive dechlorination at high PCE and TCE concentrations.
    Yu S, Semprini L.
    Biotechnol Bioeng; 2004 Nov 20; 88(4):451-64. PubMed ID: 15384053
    [Abstract] [Full Text] [Related]

  • 17. Characterization of an H2-utilizing enrichment culture that reductively dechlorinates tetrachloroethene to vinyl chloride and ethene in the absence of methanogenesis and acetogenesis.
    Maymó-Gatell X, Tandoi V, Gossett JM, Zinder SH.
    Appl Environ Microbiol; 1995 Nov 20; 61(11):3928-33. PubMed ID: 8526505
    [Abstract] [Full Text] [Related]

  • 18. Removal of tetrachloroethylene in an anaerobic column bioreactor.
    Noftsker C, Watwood ME.
    Appl Microbiol Biotechnol; 1997 Sep 20; 48(3):424-30. PubMed ID: 9352680
    [Abstract] [Full Text] [Related]

  • 19. Peat: home to novel syntrophic species that feed acetate- and hydrogen-scavenging methanogens.
    Schmidt O, Hink L, Horn MA, Drake HL.
    ISME J; 2016 Aug 20; 10(8):1954-66. PubMed ID: 26771931
    [Abstract] [Full Text] [Related]

  • 20. Thermophilic sulfate reduction and methanogenesis with methanol in a high rate anaerobic reactor.
    Weijma J, Stams AJ, Hulshoff Pol LW, Lettinga G.
    Biotechnol Bioeng; 2000 Feb 05; 67(3):354-63. PubMed ID: 10620266
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.