These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
143 related items for PubMed ID: 9830099
21. Methanogenesis: surprising molecules, microorganisms and ecosystems. Vogels GD, van der Drift C, Stumm CK, Keltjens JT, Zwart KB. Antonie Van Leeuwenhoek; 1984; 50(5-6):557-67. PubMed ID: 6442121 [Abstract] [Full Text] [Related]
22. Anaerobic degradation of phthalate isomers by methanogenic consortia. Kleerebezem R, Hulshoff Pol LW, Lettinga G. Appl Environ Microbiol; 1999 Mar; 65(3):1152-60. PubMed ID: 10049876 [Abstract] [Full Text] [Related]
23. Anaerobic biodegradation of 2,4,6-trichlorophenol by methanogenic granular sludge: role of co-substrates and methanogenic inhibition. Puyol D, Mohedano AF, Sanz JL, Rodríguez JJ. Water Sci Technol; 2009 Mar; 59(7):1449-56. PubMed ID: 19381012 [Abstract] [Full Text] [Related]
24. Complete dechlorination of tetrachloroethene to ethene in presence of methanogenesis and acetogenesis by an anaerobic sediment microcosm. Aulenta F, Majone M, Verbo P, Tandoi V. Biodegradation; 2002 Mar; 13(6):411-24. PubMed ID: 12713133 [Abstract] [Full Text] [Related]
25. Characterization of the anaerobic propionate-degrading syntrophs Smithella propionica gen. nov., sp. nov. and Syntrophobacter wolinii. Liu Y, Balkwill DL, Aldrich HC, Drake GR, Boone DR. Int J Syst Bacteriol; 1999 Apr; 49 Pt 2():545-56. PubMed ID: 10319475 [Abstract] [Full Text] [Related]
26. Chitin and corncobs as electron donor sources for the reductive dechlorination of tetrachloroethene. Brennan RA, Sanford RA, Werth CJ. Water Res; 2006 Jun; 40(11):2125-34. PubMed ID: 16725176 [Abstract] [Full Text] [Related]
27. Temperature dependence of anaerobic TCE-dechlorination in a highly enriched Dehalococcoides-containing culture. Friis AK, Heimann AC, Jakobsen R, Albrechtsen HJ, Cox E, Bjerg PL. Water Res; 2007 Jan; 41(2):355-64. PubMed ID: 17129596 [Abstract] [Full Text] [Related]
28. Anaerobic degradation of tetrachloroethylene using different co-substrates as electron donors. Yang Q, Shang HT, Wang XL, Li HD, Wang JL. Biomed Environ Sci; 2006 Feb; 19(1):73-6. PubMed ID: 16673822 [Abstract] [Full Text] [Related]
29. Metabolic interactions in methanogenic and sulfate-reducing bioreactors. Stams AJ, Plugge CM, de Bok FA, van Houten BH, Lens P, Dijkman H, Weijma J. Water Sci Technol; 2005 Feb; 52(1-2):13-20. PubMed ID: 16187442 [Abstract] [Full Text] [Related]
30. The nexus of syntrophy-associated microbiota in anaerobic digestion revealed by long-term enrichment and community survey. Narihiro T, Nobu MK, Kim NK, Kamagata Y, Liu WT. Environ Microbiol; 2015 May; 17(5):1707-20. PubMed ID: 25186254 [Abstract] [Full Text] [Related]
32. Effects of hydrogen and formate on the degradation of propionate and butyrate in thermophilic granules from an upflow anaerobic sludge blanket reactor. Schmidt JE, Ahring BK. Appl Environ Microbiol; 1993 Aug; 59(8):2546-51. PubMed ID: 8368842 [Abstract] [Full Text] [Related]
33. Enhanced dechlorination of chlorinated methanes and ethenes by chloride green rust in the presence of copper(II). Maithreepala RA, Doong RA. Environ Sci Technol; 2005 Jun 01; 39(11):4082-90. PubMed ID: 15984786 [Abstract] [Full Text] [Related]
34. High-rate anaerobic treatment of wastewater at low temperatures. Lettinga G, Rebac S, Parshina S, Nozhevnikova A, van Lier JB, Stams AJ. Appl Environ Microbiol; 1999 Apr 01; 65(4):1696-702. PubMed ID: 10103270 [Abstract] [Full Text] [Related]
35. The relative contributions of abiotic and microbial processes to the transformation of tetrachloroethylene and trichloroethylene in anaerobic microcosms. Dong Y, Liang X, Krumholz LR, Philp RP, Butler EC. Environ Sci Technol; 2009 Feb 01; 43(3):690-7. PubMed ID: 19245003 [Abstract] [Full Text] [Related]
36. Reductive dechlorination of Tri- and tetrachloroethylenes depends on transition from aerobic to anaerobic conditions. Kästner M. Appl Environ Microbiol; 1991 Jul 01; 57(7):2039-46. PubMed ID: 1892393 [Abstract] [Full Text] [Related]
37. Metabolic interactions between anaerobic bacteria in methanogenic environments. Stams AJ. Antonie Van Leeuwenhoek; 1994 Jul 01; 66(1-3):271-94. PubMed ID: 7747937 [Abstract] [Full Text] [Related]
38. Identification of a microorganism that links its growth to the reductive dechlorination of 2,3,5,6-chlorobiphenyl. Cutter LA, Watts JE, Sowers KR, May HD. Environ Microbiol; 2001 Nov 01; 3(11):699-709. PubMed ID: 11846760 [Abstract] [Full Text] [Related]
39. Anaerobic transformation of tetrachloroethane, perchloroethylene, and their mixtures by mixed-cultures enriched from contaminated soils and sediments. Aulenta F, Fina A, Potalivo M, Petrangeli Papini M, Rossetti S, Majone M. Water Sci Technol; 2005 Nov 01; 52(1-2):357-62. PubMed ID: 16180450 [Abstract] [Full Text] [Related]
40. Reductive dechlorination of tetrachloroethene by a high rate anaerobic microbial consortium. Zinder SH, Gossett JM. Environ Health Perspect; 1995 Jun 01; 103 Suppl 5(Suppl 5):5-7. PubMed ID: 8565911 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]