These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Human (Homo sapiens) and chimpanzee (Pan troglodytes) share similar ancestral centromeric alpha satellite DNA sequences but other fractions of heterochromatin differ considerably. Luke S, Verma RS. Am J Phys Anthropol; 1995 Jan; 96(1):63-71. PubMed ID: 7726296 [Abstract] [Full Text] [Related]
3. Structural rearrangements and insertions of dispersed elements in pericentromeric alpha satellites occur preferably at kinkable DNA sites. Mashkova TD, Oparina NY, Lacroix MH, Fedorova LI, G Tumeneva I, Zinovieva OL, Kisselev LL. J Mol Biol; 2001 Jan 05; 305(1):33-48. PubMed ID: 11114245 [Abstract] [Full Text] [Related]
4. Centromeric alphoid sequences are breakage prone resulting in pericentromeric inversion heteromorphism of qh region of chromosome 1. Verma RS, Ramesh KH, Mathews T, Kleyman SM, Conte RA. Ann Genet; 1996 Jan 05; 39(4):205-8. PubMed ID: 9037348 [Abstract] [Full Text] [Related]
6. Heteromorphism of human chromosome 18 detected by fluorescent in situ hybridization. Bonfatti A, Giunta C, Sensi A, Gruppioni R, Rubini M, Fontana F. Eur J Histochem; 1993 Jan 05; 37(2):149-54. PubMed ID: 7688600 [Abstract] [Full Text] [Related]
8. Contiguous arrays of satellites 1, 3, and beta form a 1.5-Mb domain on chromosome 22p. Shiels C, Coutelle C, Huxley C. Genomics; 1997 Aug 15; 44(1):35-44. PubMed ID: 9286698 [Abstract] [Full Text] [Related]
13. A 37-kb fragment common to the pericentromeric region of human chromosomes 13 and 21 and to the ancestral inactive centromere of chromosome 2. Charlieu JP, Laurent AM, Orti R, Viegas-Péquignot E, Bellis M, Roizès G. Genomics; 1993 Mar 25; 15(3):576-81. PubMed ID: 8468052 [Abstract] [Full Text] [Related]
14. Large-scale dissociation and sequential reassembly of pericentric heterochromatin in dedifferentiated Arabidopsis cells. Tessadori F, Chupeau MC, Chupeau Y, Knip M, Germann S, van Driel R, Fransz P, Gaudin V. J Cell Sci; 2007 Apr 01; 120(Pt 7):1200-8. PubMed ID: 17376962 [Abstract] [Full Text] [Related]
15. An approach for quantitative assessment of fluorescence in situ hybridization (FISH) signals for applied human molecular cytogenetics. Iourov IY, Soloviev IV, Vorsanova SG, Monakhov VV, Yurov YB. J Histochem Cytochem; 2005 Mar 01; 53(3):401-8. PubMed ID: 15750029 [Abstract] [Full Text] [Related]
18. Genetic and physical analyses of the centromeric and pericentromeric regions of human chromosome 5: recombination across 5cen. Puechberty J, Laurent AM, Gimenez S, Billault A, Brun-Laurent ME, Calenda A, Marçais B, Prades C, Ioannou P, Yurov Y, Roizès G. Genomics; 1999 Mar 15; 56(3):274-87. PubMed ID: 10087194 [Abstract] [Full Text] [Related]
19. False-positive prenatal diagnosis of trisomy 18 by interphase FISH: hybridization of chromosome 18 alpha-satellite DNA probe (D18Z1) to the heterochromatic region of chromosome 9. Wei S, Siu VM, Decker A, Quigg MH, Roberson J, Xu J, Adeyinka A. Prenat Diagn; 2007 Nov 15; 27(11):1064-6. PubMed ID: 17654752 [No Abstract] [Full Text] [Related]
20. Nonrandom degradation of DNA in human leukemic cells during radiation-induced apoptosis. Dullea RG, Robinson JF, Bedford JS. Cancer Res; 1999 Aug 01; 59(15):3712-8. PubMed ID: 10446986 [Abstract] [Full Text] [Related] Page: [Next] [New Search]