These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


764 related items for PubMed ID: 9834033

  • 1. K+ is an endothelium-derived hyperpolarizing factor in rat arteries.
    Edwards G, Dora KA, Gardener MJ, Garland CJ, Weston AH.
    Nature; 1998 Nov 19; 396(6708):269-72. PubMed ID: 9834033
    [Abstract] [Full Text] [Related]

  • 2. Interactions between endothelium-derived relaxing factors in the rat hepatic artery: focus on regulation of EDHF.
    Zygmunt PM, Plane F, Paulsson M, Garland CJ, Högestätt ED.
    Br J Pharmacol; 1998 Jul 19; 124(5):992-1000. PubMed ID: 9692786
    [Abstract] [Full Text] [Related]

  • 3. Contribution of K+ channels and ouabain-sensitive mechanisms to the endothelium-dependent relaxations of horse penile small arteries.
    Prieto D, Simonsen U, Hernández M, García-Sacristán A.
    Br J Pharmacol; 1998 Apr 19; 123(8):1609-20. PubMed ID: 9605568
    [Abstract] [Full Text] [Related]

  • 4. Further investigation of endothelium-derived hyperpolarizing factor (EDHF) in rat hepatic artery: studies using 1-EBIO and ouabain.
    Edwards G, Gardener MJ, Feletou M, Brady G, Vanhoutte PM, Weston AH.
    Br J Pharmacol; 1999 Nov 19; 128(5):1064-70. PubMed ID: 10556944
    [Abstract] [Full Text] [Related]

  • 5. Endothelial potassium channels, endothelium-dependent hyperpolarization and the regulation of vascular tone in health and disease.
    Coleman HA, Tare M, Parkington HC.
    Clin Exp Pharmacol Physiol; 2004 Sep 19; 31(9):641-9. PubMed ID: 15479173
    [Abstract] [Full Text] [Related]

  • 6. Effects of inhibitors of small- and intermediate-conductance calcium-activated potassium channels, inwardly-rectifying potassium channels and Na(+)/K(+) ATPase on EDHF relaxations in the rat hepatic artery.
    Andersson DA, Zygmunt PM, Movahed P, Andersson TL, Högestätt ED.
    Br J Pharmacol; 2000 Apr 19; 129(7):1490-6. PubMed ID: 10742306
    [Abstract] [Full Text] [Related]

  • 7. Evidence for an endothelium-derived hyperpolarizing factor in the superior mesenteric artery from rats with cirrhosis.
    Barriere E, Tazi KA, Rona JP, Pessione F, Heller J, Lebrec D, Moreau R.
    Hepatology; 2000 Nov 19; 32(5):935-41. PubMed ID: 11050042
    [Abstract] [Full Text] [Related]

  • 8. The Na-K-ATPase is a target for an EDHF displaying characteristics similar to potassium ions in the porcine renal interlobar artery.
    Büssemaker E, Wallner C, Fisslthaler B, Fleming I.
    Br J Pharmacol; 2002 Nov 19; 137(5):647-54. PubMed ID: 12381678
    [Abstract] [Full Text] [Related]

  • 9. Role of potassium channels in endothelium-dependent relaxation resistant to nitroarginine in the rat hepatic artery.
    Zygmunt PM, Högestätt ED.
    Br J Pharmacol; 1996 Apr 19; 117(7):1600-6. PubMed ID: 8730760
    [Abstract] [Full Text] [Related]

  • 10. Involvement of voltage-dependent potassium channels in the EDHF-mediated relaxation of rat hepatic artery.
    Zygmunt PM, Edwards G, Weston AH, Larsson B, Högestätt ED.
    Br J Pharmacol; 1997 May 19; 121(1):141-9. PubMed ID: 9146898
    [Abstract] [Full Text] [Related]

  • 11. [Role of endothelium-derived hyperpolarizing factor in shear stress-induced endothelium-dependent relaxations of rats].
    Zhao HY, Liu Q, Chi BR.
    Yao Xue Xue Bao; 2005 Jun 19; 40(6):491-5. PubMed ID: 16144311
    [Abstract] [Full Text] [Related]

  • 12. The endothelium-derived hyperpolarising factor (EDHF) in isolated bovine choroidal arteries.
    Delaey C, Boussery K, Breyne J, Vanheel B, Van de Voorde J.
    Exp Eye Res; 2007 Jun 19; 84(6):1067-73. PubMed ID: 17418119
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Endothelium-derived hyperpolarizing factor and potassium use different mechanisms to induce relaxation of human subcutaneous resistance arteries.
    McIntyre CA, Buckley CH, Jones GC, Sandeep TC, Andrews RC, Elliott AI, Gray GA, Williams BC, McKnight JA, Walker BR, Hadoke PW.
    Br J Pharmacol; 2001 Jul 19; 133(6):902-8. PubMed ID: 11454664
    [Abstract] [Full Text] [Related]

  • 15. Potassium- and acetylcholine-induced vasorelaxation in mice lacking endothelial nitric oxide synthase.
    Ding H, Kubes P, Triggle C.
    Br J Pharmacol; 2000 Mar 19; 129(6):1194-200. PubMed ID: 10725268
    [Abstract] [Full Text] [Related]

  • 16. Endothelium-dependent hyperpolarization of vascular smooth muscle cells.
    Félétou M, Vanhoutte PM.
    Acta Pharmacol Sin; 2000 Jan 19; 21(1):1-18. PubMed ID: 11263241
    [Abstract] [Full Text] [Related]

  • 17. Potassium potently relaxes small rat skeletal muscle arteries.
    De Clerck I, Boussery K, Pannier JL, Van De Voorde J.
    Med Sci Sports Exerc; 2003 Dec 19; 35(12):2005-12. PubMed ID: 14652495
    [Abstract] [Full Text] [Related]

  • 18. Apamin/charybdotoxin-sensitive endothelial K+ channels contribute to acetylcholine-induced, NO-dependent vasorelaxation of rat aorta.
    Qiu Y, Quilley J.
    Med Sci Monit; 2001 Dec 19; 7(6):1129-36. PubMed ID: 11687720
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 39.