These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
282 related items for PubMed ID: 9846739
1. Biofilm susceptibility to bacteriophage attack: the role of phage-borne polysaccharide depolymerase. Hughes KA, Sutherland IW, Jones MV. Microbiology (Reading); 1998 Nov; 144 ( Pt 11)():3039-3047. PubMed ID: 9846739 [Abstract] [Full Text] [Related]
2. Bacteriophage and associated polysaccharide depolymerases--novel tools for study of bacterial biofilms. Hughes KA, Sutherland IW, Clark J, Jones MV. J Appl Microbiol; 1998 Sep; 85(3):583-90. PubMed ID: 9750288 [Abstract] [Full Text] [Related]
3. Pantoea stewartii WceF is a glycan biofilm-modifying enzyme with a bacteriophage tailspike-like fold. Irmscher T, Roske Y, Gayk I, Dunsing V, Chiantia S, Heinemann U, Barbirz S. J Biol Chem; 2021 Sep; 296():100286. PubMed ID: 33450228 [Abstract] [Full Text] [Related]
4. The interaction of phage and biofilms. Sutherland IW, Hughes KA, Skillman LC, Tait K. FEMS Microbiol Lett; 2004 Mar 12; 232(1):1-6. PubMed ID: 15061140 [Abstract] [Full Text] [Related]
5. Highly specific bacteriophage-associated polysaccharide hydrolases for Klebsiella aerogenes type 8. Sutherland IW. J Gen Microbiol; 1976 May 12; 94(1):211-6. PubMed ID: 932688 [Abstract] [Full Text] [Related]
9. A highly specific Serratia-infecting T7-like phage inhibits biofilm formation in two different genera of the Enterobacteriaceae family. Vieira MS, Duarte da Silva J, Ferro CG, Cunha PC, Vidigal PMP, Canêdo da Silva C, Oliveira de Paula S, Dias RS. Res Microbiol; 2021 May 12; 172(6):103869. PubMed ID: 34333135 [Abstract] [Full Text] [Related]
10. Interaction between Rhizobium japonicum phage M-1 and its receptor. Dandekar AM, Modi VV. Can J Microbiol; 1978 Jun 12; 24(6):685-8. PubMed ID: 667736 [Abstract] [Full Text] [Related]
11. Localization and functional role of the pseudomonas bacteriophage 2 depolymerase. Castillo FJ, Bartell PF. J Virol; 1976 May 12; 18(2):701-8. PubMed ID: 818408 [Abstract] [Full Text] [Related]
12. [Biological characteristics and genomic information of a bacteriophage against pan-drug resistant Klebsiella pneumoniae in a burn patient and its effects on bacterial biofilm]. Qi ZY, Yang SY, Dong SW, Zhao FF, Qin JH, Xiang J. Zhonghua Shao Shang Za Zhi; 2020 Jan 20; 36(1):14-23. PubMed ID: 32023713 [Abstract] [Full Text] [Related]
13. Identification of a phage-derived depolymerase specific for KL64 capsule of Klebsiella pneumoniae and its anti-biofilm effect. Li M, Li P, Chen L, Guo G, Xiao Y, Chen L, Du H, Zhang W. Virus Genes; 2021 Oct 20; 57(5):434-442. PubMed ID: 34156584 [Abstract] [Full Text] [Related]
14. Factors influencing the adsorption of bacteriophage 2 to cells of Pseudomonas aeruginosa. Reese JF, Dimitracopoulos G, Bartell PF. J Virol; 1974 Jan 20; 13(1):22-7. PubMed ID: 4204250 [Abstract] [Full Text] [Related]
18. Bacteriophage polysaccharide depolymerases and biomedical applications. Yan J, Mao J, Xie J. BioDrugs; 2014 Jun 20; 28(3):265-74. PubMed ID: 24352884 [Abstract] [Full Text] [Related]
19. Stimulation of clover root hair infection by lectin-binding oligosaccharides from the capsular and extracellular polysaccharides of Rhizobium trifolii. Abe M, Sherwood JE, Hollingsworth RI, Dazzo FB. J Bacteriol; 1984 Nov 20; 160(2):517-20. PubMed ID: 6501213 [Abstract] [Full Text] [Related]