These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
234 related items for PubMed ID: 9846936
1. Finite element modeling of three-dimensional pulsatile flow in the abdominal aorta: relevance to atherosclerosis. Taylor CA, Hughes TJ, Zarins CK. Ann Biomed Eng; 1998; 26(6):975-87. PubMed ID: 9846936 [Abstract] [Full Text] [Related]
2. Effect of exercise on hemodynamic conditions in the abdominal aorta. Taylor CA, Hughes TJ, Zarins CK. J Vasc Surg; 1999 Jun; 29(6):1077-89. PubMed ID: 10359942 [Abstract] [Full Text] [Related]
3. Two-dimensional velocity measurements in a pulsatile flow model of the normal abdominal aorta simulating different hemodynamic conditions. Pedersen EM, Sung HW, Burlson AC, Yoganathan AP. J Biomech; 1993 Oct; 26(10):1237-47. PubMed ID: 8253828 [Abstract] [Full Text] [Related]
4. Pulsatile velocity measurements in a model of the human abdominal aorta under resting conditions. Moore JE, Ku DN. J Biomech Eng; 1994 Aug; 116(3):337-46. PubMed ID: 7799637 [Abstract] [Full Text] [Related]
5. Fluid wall shear stress measurements in a model of the human abdominal aorta: oscillatory behavior and relationship to atherosclerosis. Moore JE, Xu C, Glagov S, Zarins CK, Ku DN. Atherosclerosis; 1994 Oct; 110(2):225-40. PubMed ID: 7848371 [Abstract] [Full Text] [Related]
6. Wall shear stress and early atherosclerotic lesions in the abdominal aorta in young adults. Pedersen EM, Agerbaek M, Kristensen IB, Yoganathan AP. Eur J Vasc Endovasc Surg; 1997 May; 13(5):443-51. PubMed ID: 9166266 [Abstract] [Full Text] [Related]
7. Pulsatile flow visualization in the abdominal aorta under differing physiologic conditions: implications for increased susceptibility to atherosclerosis. Moore JE, Ku DN, Zarins CK, Glagov S. J Biomech Eng; 1992 Aug; 114(3):391-7. PubMed ID: 1295493 [Abstract] [Full Text] [Related]
9. Pulsatile velocity measurements in a model of the human abdominal aorta under simulated exercise and postprandial conditions. Moore JE, Ku DN. J Biomech Eng; 1994 Feb; 116(1):107-11. PubMed ID: 8189705 [Abstract] [Full Text] [Related]
10. Determination of wall shear stress in the aorta with the use of MR phase velocity mapping. Oshinski JN, Ku DN, Mukundan S, Loth F, Pettigrew RI. J Magn Reson Imaging; 1995 Feb; 5(6):640-7. PubMed ID: 8748480 [Abstract] [Full Text] [Related]
11. Flow and wall shear stress characterization after endovascular aneurysm repair and endovascular aneurysm sealing in an infrarenal aneurysm model. Boersen JT, Groot Jebbink E, Versluis M, Slump CH, Ku DN, de Vries JPM, Reijnen MMPJ. J Vasc Surg; 2017 Dec; 66(6):1844-1853. PubMed ID: 28285931 [Abstract] [Full Text] [Related]
12. Pulsatile flow of non-Newtonian blood fluid inside stenosed arteries: Investigating the effects of viscoelastic and elastic walls, arteriosclerosis, and polycythemia diseases. Nejad AA, Talebi Z, Cheraghali D, Shahbani-Zahiri A, Norouzi M. Comput Methods Programs Biomed; 2018 Feb; 154():109-122. PubMed ID: 29249336 [Abstract] [Full Text] [Related]
13. Hemodynamics and atherosclerosis. Insights and perspectives gained from studies of human arteries. Glagov S, Zarins C, Giddens DP, Ku DN. Arch Pathol Lab Med; 1988 Oct; 112(10):1018-31. PubMed ID: 3052352 [Abstract] [Full Text] [Related]
14. Numerical simulation of steady flow fields in a model of abdominal aorta with its peripheral branches. Lee D, Chen JY. J Biomech; 2002 Aug; 35(8):1115-22. PubMed ID: 12126670 [Abstract] [Full Text] [Related]
15. Abdominal aortic hemodynamics in young healthy adults at rest and during lower limb exercise: quantification using image-based computer modeling. Tang BT, Cheng CP, Draney MT, Wilson NM, Tsao PS, Herfkens RJ, Taylor CA. Am J Physiol Heart Circ Physiol; 2006 Aug; 291(2):H668-76. PubMed ID: 16603687 [Abstract] [Full Text] [Related]
16. The effect of asymmetry in abdominal aortic aneurysms under physiologically realistic pulsatile flow conditions. Finol EA, Keyhani K, Amon CH. J Biomech Eng; 2003 Apr; 125(2):207-17. PubMed ID: 12751282 [Abstract] [Full Text] [Related]
17. A one-dimensional finite element method for simulation-based medical planning for cardiovascular disease. Wan J, Steele B, Spicer SA, Strohband S, Feijóo GR, Hughes TJ, Taylor CA. Comput Methods Biomech Biomed Engin; 2002 Jun; 5(3):195-206. PubMed ID: 12186712 [Abstract] [Full Text] [Related]
18. Effect of hemodynamic factors on atherosclerosis in the abdominal aorta. Nguyen ND, Haque AK. Atherosclerosis; 1990 Sep; 84(1):33-9. PubMed ID: 2248618 [Abstract] [Full Text] [Related]
19. Hemodynamics simulation and identification of susceptible sites of atherosclerotic lesion formation in a model abdominal aorta. Buchanan JR, Kleinstreuer C, Hyun S, Truskey GA. J Biomech; 2003 Aug; 36(8):1185-96. PubMed ID: 12831745 [Abstract] [Full Text] [Related]
20. Factors influencing blood flow patterns in the human right coronary artery. Myers JG, Moore JA, Ojha M, Johnston KW, Ethier CR. Ann Biomed Eng; 2001 Feb; 29(2):109-20. PubMed ID: 11284665 [Abstract] [Full Text] [Related] Page: [Next] [New Search]