These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
142 related items for PubMed ID: 9851290
1. Redox cycling of polycyclic aromatic hydrocarbon o-quinones: metal ion-catalyzed oxidation of catechols bypasses inhibition by superoxide dismutase. Jarabak R, Harvey RG, Jarabak J. Chem Biol Interact; 1998 Oct 02; 115(3):201-13. PubMed ID: 9851290 [Abstract] [Full Text] [Related]
2. Redox cycling of polycyclic aromatic hydrocarbon o-quinones: reversal of superoxide dismutase inhibition by ascorbate. Jarabak R, Harvey RG, Jarabak J. Arch Biochem Biophys; 1997 Mar 01; 339(1):92-8. PubMed ID: 9056238 [Abstract] [Full Text] [Related]
3. Specificity of human aldo-keto reductases, NAD(P)H:quinone oxidoreductase, and carbonyl reductases to redox-cycle polycyclic aromatic hydrocarbon diones and 4-hydroxyequilenin-o-quinone. Shultz CA, Quinn AM, Park JH, Harvey RG, Bolton JL, Maser E, Penning TM. Chem Res Toxicol; 2011 Dec 19; 24(12):2153-66. PubMed ID: 21910479 [Abstract] [Full Text] [Related]
4. Polycyclic aromatic hydrocarbon quinone-mediated oxidation reduction cycling catalysed by a human placental 17beta-hydroxysteroid dehydrogenase. Jarabak R, Harvey RG, Jarabak J. Arch Biochem Biophys; 1996 Mar 01; 327(1):174-80. PubMed ID: 8615688 [Abstract] [Full Text] [Related]
5. Polycyclic aromatic hydrocarbon quinone-mediated oxidation reduction cycling catalyzed by a human placental NADPH-linked carbonyl reductase. Jarabak J. Arch Biochem Biophys; 1991 Dec 01; 291(2):334-8. PubMed ID: 1659323 [Abstract] [Full Text] [Related]
6. Reactive oxygen species generated by PAH o-quinones cause change-in-function mutations in p53. Yu D, Berlin JA, Penning TM, Field J. Chem Res Toxicol; 2002 Jun 01; 15(6):832-42. PubMed ID: 12067251 [Abstract] [Full Text] [Related]
7. Polycyclic aromatic hydrocarbon (PAH) o-quinones produced by the aldo-keto-reductases (AKRs) generate abasic sites, oxidized pyrimidines, and 8-oxo-dGuo via reactive oxygen species. Park JH, Troxel AB, Harvey RG, Penning TM. Chem Res Toxicol; 2006 May 01; 19(5):719-28. PubMed ID: 16696575 [Abstract] [Full Text] [Related]
8. Studies on three reductases which have polycyclic aromatic hydrocarbon quinones as substrates. Jarabak J, Harvey RG. Arch Biochem Biophys; 1993 Jun 01; 303(2):394-401. PubMed ID: 7685581 [Abstract] [Full Text] [Related]
9. Aldo-keto reductases and formation of polycyclic aromatic hydrocarbon o-quinones. Penning TM. Methods Enzymol; 2004 Jun 01; 378():31-67. PubMed ID: 15038957 [No Abstract] [Full Text] [Related]
10. Polycyclic aromatic hydrocarbon quinones may be either substrates for or irreversible inhibitors of the human placental NAD-linked 15-hydroxyprostaglandin dehydrogenase. Jarabak J. Arch Biochem Biophys; 1992 Jan 01; 292(1):239-43. PubMed ID: 1309294 [Abstract] [Full Text] [Related]
11. Formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxo-dGuo) by PAH o-quinones: involvement of reactive oxygen species and copper(II)/copper(I) redox cycling. Park JH, Gopishetty S, Szewczuk LM, Troxel AB, Harvey RG, Penning TM. Chem Res Toxicol; 2005 Jun 01; 18(6):1026-37. PubMed ID: 15962938 [Abstract] [Full Text] [Related]
12. Dihydrodiol dehydrogenase and its role in polycyclic aromatic hydrocarbon metabolism. Penning TM. Chem Biol Interact; 1993 Oct 01; 89(1):1-34. PubMed ID: 8221964 [Abstract] [Full Text] [Related]
13. Human aldo-keto reductases and the metabolic activation of polycyclic aromatic hydrocarbons. Penning TM. Chem Res Toxicol; 2014 Nov 17; 27(11):1901-17. PubMed ID: 25279998 [Abstract] [Full Text] [Related]
14. Isoform-specific induction of a human aldo-keto reductase by polycyclic aromatic hydrocarbons (PAHs), electrophiles, and oxidative stress: implications for the alternative pathway of PAH activation catalyzed by human dihydrodiol dehydrogenase. Burczynski ME, Lin HK, Penning TM. Cancer Res; 1999 Feb 01; 59(3):607-14. PubMed ID: 9973208 [Abstract] [Full Text] [Related]
15. Detoxication of structurally diverse polycyclic aromatic hydrocarbon (PAH) o-quinones by human recombinant catechol-O-methyltransferase (COMT) via O-methylation of PAH catechols. Zhang L, Jin Y, Chen M, Huang M, Harvey RG, Blair IA, Penning TM. J Biol Chem; 2011 Jul 22; 286(29):25644-54. PubMed ID: 21622560 [Abstract] [Full Text] [Related]
16. Regiospecific reduction of polycyclic aromatic quinones by rabbit liver dihydrodiol dehydrogenases. Post K, Seidel A, Platt KL, Oesch F, Klein J. Chem Biol Interact; 1994 Feb 22; 90(2):157-68. PubMed ID: 8156605 [Abstract] [Full Text] [Related]
17. Activation of polycyclic aromatic hydrocarbon trans-dihydrodiol proximate carcinogens by human aldo-keto reductase (AKR1C) enzymes and their functional overexpression in human lung carcinoma (A549) cells. Palackal NT, Lee SH, Harvey RG, Blair IA, Penning TM. J Biol Chem; 2002 Jul 05; 277(27):24799-808. PubMed ID: 11978787 [Abstract] [Full Text] [Related]
18. Aromatic hydrocarbon quinone-mediated reactive oxygen species production on hepatic microsomes of the flounder (Platichthys flesus L.). Lemaire P, Livingstone DR. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol; 1997 Jun 05; 117(2):131-9. PubMed ID: 9214713 [Abstract] [Full Text] [Related]
19. Dihydrodiol dehydrogenases and polycyclic aromatic hydrocarbon activation: generation of reactive and redox active o-quinones. Penning TM, Burczynski ME, Hung CF, McCoull KD, Palackal NT, Tsuruda LS. Chem Res Toxicol; 1999 Jan 05; 12(1):1-18. PubMed ID: 9894013 [No Abstract] [Full Text] [Related]
20. The Role of Human Aldo-Keto Reductases in the Metabolic Activation and Detoxication of Polycyclic Aromatic Hydrocarbons: Interconversion of PAH Catechols and PAH o-Quinones. Zhang L, Jin Y, Huang M, Penning TM. Front Pharmacol; 2012 Jan 05; 3():193. PubMed ID: 23162467 [Abstract] [Full Text] [Related] Page: [Next] [New Search]