These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Isolation based on L-selectin expression of immune effector T cells derived from tumor-draining lymph nodes. Kagamu H, Touhalisky JE, Plautz GE, Krauss JC, Shu S. Cancer Res; 1996 Oct 01; 56(19):4338-42. PubMed ID: 8813119 [Abstract] [Full Text] [Related]
6. Treatment of intracranial tumors by systemic transfer of superantigen-activated tumor-draining lymph node T cells. Inoue M, Plautz GE, Shu S. Cancer Res; 1996 Oct 15; 56(20):4702-8. PubMed ID: 8840987 [Abstract] [Full Text] [Related]
10. Enhancing efficacy of anticancer vaccines by targeted delivery to tumor-draining lymph nodes. Jeanbart L, Ballester M, de Titta A, Corthésy P, Romero P, Hubbell JA, Swartz MA. Cancer Immunol Res; 2014 May 15; 2(5):436-47. PubMed ID: 24795356 [Abstract] [Full Text] [Related]
11. Activation of T lymphocytes for the adoptive immunotherapy of cancer. Sussman JJ, Shu S, Sondak VK, Chang AE. Ann Surg Oncol; 1994 Jul 15; 1(4):296-306. PubMed ID: 7850528 [Abstract] [Full Text] [Related]
12. Lymphoid subpopulation changes in regional lymph nodes in squamous head and neck cancer. Saxon A, Portis J. Cancer Res; 1977 Apr 15; 37(4):1154-8. PubMed ID: 300279 [Abstract] [Full Text] [Related]
13. Adoptive immunotherapy with tumor-specific T lymphocytes generated from cytokine gene-modified tumor-primed lymph node cells. Ohno K, Yoshizawa H, Tsukada H, Takeda T, Yamaguchi Y, Ichikawa K, Maruyama Y, Suzuki Y, Suzuki E, Arakawa M. J Immunol; 1996 May 15; 156(10):3875-81. PubMed ID: 8621926 [Abstract] [Full Text] [Related]
15. Simultaneous targeting of CD3 on T cells and CD40 on B or dendritic cells augments the antitumor reactivity of tumor-primed lymph node cells. Li Q, Grover AC, Donald EJ, Carr A, Yu J, Whitfield J, Nelson M, Takeshita N, Chang AE. J Immunol; 2005 Aug 01; 175(3):1424-32. PubMed ID: 16034078 [Abstract] [Full Text] [Related]
16. Unlocking the therapeutic potential of primary tumor-draining lymph nodes. Rotman J, Koster BD, Jordanova ES, Heeren AM, de Gruijl TD. Cancer Immunol Immunother; 2019 Oct 01; 68(10):1681-1688. PubMed ID: 30944963 [Abstract] [Full Text] [Related]
17. Immune responses in the draining lymph nodes against cancer: implications for immunotherapy. Shu S, Cochran AJ, Huang RR, Morton DL, Maecker HT. Cancer Metastasis Rev; 2006 Jun 01; 25(2):233-42. PubMed ID: 16770535 [Abstract] [Full Text] [Related]
18. Immunotherapy Goes Local: The Central Role of Lymph Nodes in Driving Tumor Infiltration and Efficacy. van Pul KM, Fransen MF, van de Ven R, de Gruijl TD. Front Immunol; 2021 Jun 01; 12():643291. PubMed ID: 33732264 [Abstract] [Full Text] [Related]
19. Foxp3(+) regulatory T cells and natural killer cells distinctly infiltrate primary tumors and draining lymph nodes in pulmonary adenocarcinoma. Schneider T, Kimpfler S, Warth A, Schnabel PA, Dienemann H, Schadendorf D, Hoffmann H, Umansky V. J Thorac Oncol; 2011 Mar 01; 6(3):432-8. PubMed ID: 21258248 [Abstract] [Full Text] [Related]
20. Immune profiles of CD4+ lymphocyte subsets in breast cancer tumor draining lymph nodes. Faghih Z, Erfani N, Haghshenas MR, Safaei A, Talei AR, Ghaderi A. Immunol Lett; 2014 Mar 01; 158(1-2):57-65. PubMed ID: 24326038 [Abstract] [Full Text] [Related] Page: [Next] [New Search]