These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


161 related items for PubMed ID: 9858371

  • 1. Cerebral control of unimanual and bimanual movements: an H2(15)O PET study.
    Goerres GW, Samuel M, Jenkins IH, Brooks DJ.
    Neuroreport; 1998 Nov 16; 9(16):3631-8. PubMed ID: 9858371
    [Abstract] [Full Text] [Related]

  • 2. Role of the human rostral supplementary motor area and the basal ganglia in motor sequence control: investigations with H2 15O PET.
    Boecker H, Dagher A, Ceballos-Baumann AO, Passingham RE, Samuel M, Friston KJ, Poline J, Dettmers C, Conrad B, Brooks DJ.
    J Neurophysiol; 1998 Feb 16; 79(2):1070-80. PubMed ID: 9463462
    [Abstract] [Full Text] [Related]

  • 3. Role of the supplementary motor area and the right premotor cortex in the coordination of bimanual finger movements.
    Sadato N, Yonekura Y, Waki A, Yamada H, Ishii Y.
    J Neurosci; 1997 Dec 15; 17(24):9667-74. PubMed ID: 9391021
    [Abstract] [Full Text] [Related]

  • 4. Self-initiated versus externally triggered movements. II. The effect of movement predictability on regional cerebral blood flow.
    Jenkins IH, Jahanshahi M, Jueptner M, Passingham RE, Brooks DJ.
    Brain; 2000 Jun 15; 123 ( Pt 6)():1216-28. PubMed ID: 10825359
    [Abstract] [Full Text] [Related]

  • 5. The size of corpus callosum correlates with functional activation of medial motor cortical areas in bimanual and unimanual movements.
    Stanćák A, Cohen ER, Seidler RD, Duong TQ, Kim SG.
    Cereb Cortex; 2003 May 15; 13(5):475-85. PubMed ID: 12679294
    [Abstract] [Full Text] [Related]

  • 6. Resource-demanding versus cost-effective bimanual interaction in the brain.
    Aramaki Y, Osu R, Sadato N.
    Exp Brain Res; 2010 Jun 15; 203(2):407-18. PubMed ID: 20419370
    [Abstract] [Full Text] [Related]

  • 7. Cerebral midline structures in bimanual coordination.
    Stephan KM, Binkofski F, Posse S, Seitz RJ, Freund HJ.
    Exp Brain Res; 1999 Sep 15; 128(1-2):243-9. PubMed ID: 10473767
    [Abstract] [Full Text] [Related]

  • 8. Self-paced versus metronome-paced finger movements. A positron emission tomography study.
    Wessel K, Zeffiro T, Toro C, Hallett M.
    J Neuroimaging; 1997 Jul 15; 7(3):145-51. PubMed ID: 9237433
    [Abstract] [Full Text] [Related]

  • 9. Changes in regional cerebral blood flow during self-paced arm and finger movements. A PET study.
    Kawashima R, Itoh H, Ono S, Satoh K, Furumoto S, Gotoh R, Koyama M, Yoshioka S, Takahashi T, Takahashi K, Yanagisawa T, Fukuda H.
    Brain Res; 1996 Apr 15; 716(1-2):141-8. PubMed ID: 8738230
    [Abstract] [Full Text] [Related]

  • 10. Both primary motor cortex and supplementary motor area play an important role in complex finger movement.
    Shibasaki H, Sadato N, Lyshkow H, Yonekura Y, Honda M, Nagamine T, Suwazono S, Magata Y, Ikeda A, Miyazaki M.
    Brain; 1993 Dec 15; 116 ( Pt 6)():1387-98. PubMed ID: 8293277
    [Abstract] [Full Text] [Related]

  • 11. Do bimanual motor actions involve the dorsal premotor (PMd), cingulate (CMA) and posterior parietal (PPC) cortices? Comparison with primary and supplementary motor cortical areas.
    Kermadi I, Liu Y, Rouiller EM.
    Somatosens Mot Res; 2000 Dec 15; 17(3):255-71. PubMed ID: 10994596
    [Abstract] [Full Text] [Related]

  • 12. Suppression of the non-dominant motor cortex during bimanual symmetric finger movement: a functional magnetic resonance imaging study.
    Aramaki Y, Honda M, Sadato N.
    Neuroscience; 2006 Sep 15; 141(4):2147-53. PubMed ID: 16793210
    [Abstract] [Full Text] [Related]

  • 13. Involvement of area MT in bimanual finger movements in left-handers: an fMRI study.
    Müller K, Kleiser R, Mechsner F, Seitz RJ.
    Eur J Neurosci; 2011 Oct 15; 34(8):1301-9. PubMed ID: 21933287
    [Abstract] [Full Text] [Related]

  • 14. Identification of the cerebral loci processing human swallowing with H2(15)O PET activation.
    Hamdy S, Rothwell JC, Brooks DJ, Bailey D, Aziz Q, Thompson DG.
    J Neurophysiol; 1999 Apr 15; 81(4):1917-26. PubMed ID: 10200226
    [Abstract] [Full Text] [Related]

  • 15. Cerebellar and premotor function in bimanual coordination: parametric neural responses to spatiotemporal complexity and cycling frequency.
    Debaere F, Wenderoth N, Sunaert S, Van Hecke P, Swinnen SP.
    Neuroimage; 2004 Apr 15; 21(4):1416-27. PubMed ID: 15050567
    [Abstract] [Full Text] [Related]

  • 16. Evidence for lateral premotor and parietal overactivity in Parkinson's disease during sequential and bimanual movements. A PET study.
    Samuel M, Ceballos-Baumann AO, Blin J, Uema T, Boecker H, Passingham RE, Brooks DJ.
    Brain; 1997 Jun 15; 120 ( Pt 6)():963-76. PubMed ID: 9217681
    [Abstract] [Full Text] [Related]

  • 17. The role of cerebral cortex in the generation of voluntary saccades: a positron emission tomographic study.
    Fox PT, Fox JM, Raichle ME, Burde RM.
    J Neurophysiol; 1985 Aug 15; 54(2):348-69. PubMed ID: 3875696
    [Abstract] [Full Text] [Related]

  • 18. Neural representation in M1 and S1 cortex of bilateral hand actions during prehension.
    Gardner EP, Putrino DF, Chen Van Daele J.
    J Neurophysiol; 2022 Apr 01; 127(4):1007-1025. PubMed ID: 35294304
    [Abstract] [Full Text] [Related]

  • 19. Bimanual versus unimanual coordination: what makes the difference?
    Koeneke S, Lutz K, Wüstenberg T, Jäncke L.
    Neuroimage; 2004 Jul 01; 22(3):1336-50. PubMed ID: 15219606
    [Abstract] [Full Text] [Related]

  • 20. Frontoparietal cortex and cerebellum contribution to the update of actual and mental motor performance during the day.
    Bonzano L, Roccatagliata L, Ruggeri P, Papaxanthis C, Bove M.
    Sci Rep; 2016 Jul 22; 6():30126. PubMed ID: 27444783
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.