These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


724 related items for PubMed ID: 9860872

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. Lipid microdomains in dimyristoylphosphatidylcholine-ceramide liposomes.
    Holopainen JM, Lehtonen JY, Kinnunen PK.
    Chem Phys Lipids; 1997 Aug 08; 88(1):1-13. PubMed ID: 9297850
    [Abstract] [Full Text] [Related]

  • 3. Detergent-resistant, ceramide-enriched domains in sphingomyelin/ceramide bilayers.
    Sot J, Bagatolli LA, Goñi FM, Alonso A.
    Biophys J; 2006 Feb 01; 90(3):903-14. PubMed ID: 16284266
    [Abstract] [Full Text] [Related]

  • 4. Interaction of ceramides with phosphatidylcholine, sphingomyelin and sphingomyelin/cholesterol bilayers.
    Massey JB.
    Biochim Biophys Acta; 2001 Feb 09; 1510(1-2):167-84. PubMed ID: 11342156
    [Abstract] [Full Text] [Related]

  • 5. Formation of ceramide-enriched domains in lipid particles enhances the binding of apolipoprotein E.
    Morita SY, Nakano M, Sakurai A, Deharu Y, Vertut-Doï A, Handa T.
    FEBS Lett; 2005 Mar 14; 579(7):1759-64. PubMed ID: 15757672
    [Abstract] [Full Text] [Related]

  • 6. Vectorial budding of vesicles by asymmetrical enzymatic formation of ceramide in giant liposomes.
    Holopainen JM, Angelova MI, Kinnunen PK.
    Biophys J; 2000 Feb 14; 78(2):830-8. PubMed ID: 10653795
    [Abstract] [Full Text] [Related]

  • 7. Sphingomyelin composition and physical asymmetries in native acetylcholine receptor-rich membranes.
    Bonini IC, Antollini SS, Gutiérrez-Merino C, Barrantes FJ.
    Eur Biophys J; 2002 Oct 14; 31(6):417-27. PubMed ID: 12355251
    [Abstract] [Full Text] [Related]

  • 8. A combined fluorescence spectroscopy, confocal and 2-photon microscopy approach to re-evaluate the properties of sphingolipid domains.
    Pinto SN, Fernandes F, Fedorov A, Futerman AH, Silva LC, Prieto M.
    Biochim Biophys Acta; 2013 Sep 14; 1828(9):2099-110. PubMed ID: 23702462
    [Abstract] [Full Text] [Related]

  • 9. Structural diversity of sphingomyelin microdomains.
    Giocondi MC, Boichot S, Plénat T, Le Grimellec CC.
    Ultramicroscopy; 2004 Aug 14; 100(3-4):135-43. PubMed ID: 15231303
    [Abstract] [Full Text] [Related]

  • 10. Content and structure of ceramide and sphingomyelin and sphingomyelinase activity in mouse hepatoma-22.
    Rylova SN, Somova OG, Zubova ES, Dudnik LB, Kogtev LS, Kozlov AM, Alesenko AV, Dyatlovitskaya EV.
    Biochemistry (Mosc); 1999 Apr 14; 64(4):437-41. PubMed ID: 10231598
    [Abstract] [Full Text] [Related]

  • 11. Rapid phase change of lipid microdomains in giant vesicles induced by conversion of sphingomyelin to ceramide.
    Taniguchi Y, Ohba T, Miyata H, Ohki K.
    Biochim Biophys Acta; 2006 Feb 14; 1758(2):145-53. PubMed ID: 16580624
    [Abstract] [Full Text] [Related]

  • 12. Sphingomyelinase-induced phase transformations: causing morphology switches and multiple-time-domain ceramide generation in model raft membranes.
    Chao L, Gast AP, Hatton TA, Jensen KF.
    Langmuir; 2010 Jan 05; 26(1):344-56. PubMed ID: 19863058
    [Abstract] [Full Text] [Related]

  • 13. Shape transitions and lattice structuring of ceramide-enriched domains generated by sphingomyelinase in lipid monolayers.
    Härtel S, Fanani ML, Maggio B.
    Biophys J; 2005 Jan 05; 88(1):287-304. PubMed ID: 15489298
    [Abstract] [Full Text] [Related]

  • 14. Ceramide drives cholesterol out of the ordered lipid bilayer phase into the crystal phase in 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine/cholesterol/ceramide ternary mixtures.
    Ali MR, Cheng KH, Huang J.
    Biochemistry; 2006 Oct 17; 45(41):12629-38. PubMed ID: 17029417
    [Abstract] [Full Text] [Related]

  • 15. Evidence for phospholipid microdomain formation in liquid crystalline liposomes reconstituted with Escherichia coli lactose permease.
    Lehtonen JY, Kinnunen PK.
    Biophys J; 1997 Mar 17; 72(3):1247-57. PubMed ID: 9138570
    [Abstract] [Full Text] [Related]

  • 16. Raft domain reorganization driven by short- and long-chain ceramide: a combined AFM and FCS study.
    Chiantia S, Kahya N, Schwille P.
    Langmuir; 2007 Jul 03; 23(14):7659-65. PubMed ID: 17564472
    [Abstract] [Full Text] [Related]

  • 17. Lateral Segregation of Palmitoyl Ceramide-1-Phosphate in Simple and Complex Bilayers.
    Al Sazzad MA, Yasuda T, Nyholm TKM, Slotte JP.
    Biophys J; 2019 Jul 09; 117(1):36-45. PubMed ID: 31133285
    [Abstract] [Full Text] [Related]

  • 18. Enzymatic generation of ceramide induces membrane restructuring: Correlated AFM and fluorescence imaging of supported bilayers.
    Ira, Zou S, Ramirez DM, Vanderlip S, Ogilvie W, Jakubek ZJ, Johnston LJ.
    J Struct Biol; 2009 Oct 09; 168(1):78-89. PubMed ID: 19348948
    [Abstract] [Full Text] [Related]

  • 19. Lipid raft composition modulates sphingomyelinase activity and ceramide-induced membrane physical alterations.
    Silva LC, Futerman AH, Prieto M.
    Biophys J; 2009 Apr 22; 96(8):3210-22. PubMed ID: 19383465
    [Abstract] [Full Text] [Related]

  • 20. Asymmetric addition of ceramides but not dihydroceramides promotes transbilayer (flip-flop) lipid motion in membranes.
    Contreras FX, Basañez G, Alonso A, Herrmann A, Goñi FM.
    Biophys J; 2005 Jan 22; 88(1):348-59. PubMed ID: 15465865
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 37.