These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


203 related items for PubMed ID: 9860875

  • 1. Conversion of a catalytic into a structural disulfide bond by circular permutation.
    Hennecke J, Glockshuber R.
    Biochemistry; 1998 Dec 15; 37(50):17590-7. PubMed ID: 9860875
    [Abstract] [Full Text] [Related]

  • 2. Structural analysis of three His32 mutants of DsbA: support for an electrostatic role of His32 in DsbA stability.
    Guddat LW, Bardwell JC, Glockshuber R, Huber-Wunderlich M, Zander T, Martin JL.
    Protein Sci; 1997 Sep 15; 6(9):1893-900. PubMed ID: 9300489
    [Abstract] [Full Text] [Related]

  • 3. Structure of circularly permuted DsbA(Q100T99): preserved global fold and local structural adjustments.
    Manjasetty BA, Hennecke J, Glockshuber R, Heinemann U.
    Acta Crystallogr D Biol Crystallogr; 2004 Feb 15; 60(Pt 2):304-9. PubMed ID: 14747707
    [Abstract] [Full Text] [Related]

  • 4. Structure of reduced DsbA from Escherichia coli in solution.
    Schirra HJ, Renner C, Czisch M, Huber-Wunderlich M, Holak TA, Glockshuber R.
    Biochemistry; 1998 May 05; 37(18):6263-76. PubMed ID: 9572841
    [Abstract] [Full Text] [Related]

  • 5. Complementation of DsbA deficiency with secreted thioredoxin variants reveals the crucial role of an efficient dithiol oxidant for catalyzed protein folding in the bacterial periplasm.
    Jonda S, Huber-Wunderlich M, Glockshuber R, Mössner E.
    EMBO J; 1999 Jun 15; 18(12):3271-81. PubMed ID: 10369668
    [Abstract] [Full Text] [Related]

  • 6. [Study on disulfide bond formation protein A in Escherichia coli].
    Luo M, Guan YX, Yao SJ.
    Sheng Wu Gong Cheng Xue Bao; 2007 Jan 15; 23(1):7-15. PubMed ID: 17366881
    [Abstract] [Full Text] [Related]

  • 7. Quenching of tryptophan fluorescence by the active-site disulfide bridge in the DsbA protein from Escherichia coli.
    Hennecke J, Sillen A, Huber-Wunderlich M, Engelborghs Y, Glockshuber R.
    Biochemistry; 1997 May 27; 36(21):6391-400. PubMed ID: 9174355
    [Abstract] [Full Text] [Related]

  • 8. Random circular permutation of DsbA reveals segments that are essential for protein folding and stability.
    Hennecke J, Sebbel P, Glockshuber R.
    J Mol Biol; 1999 Mar 05; 286(4):1197-215. PubMed ID: 10047491
    [Abstract] [Full Text] [Related]

  • 9. On the role of the cis-proline residue in the active site of DsbA.
    Charbonnier JB, Belin P, Moutiez M, Stura EA, Quéméneur E.
    Protein Sci; 1999 Jan 05; 8(1):96-105. PubMed ID: 10210188
    [Abstract] [Full Text] [Related]

  • 10. A single dipeptide sequence modulates the redox properties of a whole enzyme family.
    Huber-Wunderlich M, Glockshuber R.
    Fold Des; 1998 Jan 05; 3(3):161-71. PubMed ID: 9562546
    [Abstract] [Full Text] [Related]

  • 11. Determination of the DeltapKa between the active site cysteines of thioredoxin and DsbA.
    Carvalho AT, Fernandes PA, Ramos MJ.
    J Comput Chem; 2006 Jun 05; 27(8):966-75. PubMed ID: 16586531
    [Abstract] [Full Text] [Related]

  • 12. Characterization of Escherichia coli thioredoxin variants mimicking the active-sites of other thiol/disulfide oxidoreductases.
    Mössner E, Huber-Wunderlich M, Glockshuber R.
    Protein Sci; 1998 May 05; 7(5):1233-44. PubMed ID: 9605329
    [Abstract] [Full Text] [Related]

  • 13. [Redox properties and conformational changes of DsbA protein from Escherichia coli periplasm].
    Li Q, Hu HY.
    Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai); 2002 Sep 05; 34(5):583-8. PubMed ID: 12198560
    [Abstract] [Full Text] [Related]

  • 14. Competition between DsbA-mediated oxidation and conformational folding of RTEM1 beta-lactamase.
    Frech C, Wunderlich M, Glockshuber R, Schmid FX.
    Biochemistry; 1996 Sep 03; 35(35):11386-95. PubMed ID: 8784194
    [Abstract] [Full Text] [Related]

  • 15. Intriguing conformation changes associated with the trans/cis isomerization of a prolyl residue in the active site of the DsbA C33A mutant.
    Ondo-Mbele E, Vivès C, Koné A, Serre L.
    J Mol Biol; 2005 Apr 01; 347(3):555-63. PubMed ID: 15755450
    [Abstract] [Full Text] [Related]

  • 16. Pathways of disulfide bond formation in Escherichia coli.
    Messens J, Collet JF.
    Int J Biochem Cell Biol; 2006 Apr 01; 38(7):1050-62. PubMed ID: 16446111
    [Abstract] [Full Text] [Related]

  • 17. Paradoxical redox properties of DsbB and DsbA in the protein disulfide-introducing reaction cascade.
    Inaba K, Ito K.
    EMBO J; 2002 Jun 03; 21(11):2646-54. PubMed ID: 12032077
    [Abstract] [Full Text] [Related]

  • 18. Replacement of the active-site cysteine residues of DsbA, a protein required for disulfide bond formation in vivo.
    Zapun A, Cooper L, Creighton TE.
    Biochemistry; 1994 Feb 22; 33(7):1907-14. PubMed ID: 8110795
    [Abstract] [Full Text] [Related]

  • 19. The redox properties of protein disulfide isomerase (DsbA) of Escherichia coli result from a tense conformation of its oxidized form.
    Wunderlich M, Jaenicke R, Glockshuber R.
    J Mol Biol; 1993 Oct 20; 233(4):559-66. PubMed ID: 8411164
    [Abstract] [Full Text] [Related]

  • 20. Redox properties of protein disulfide isomerase (DsbA) from Escherichia coli.
    Wunderlich M, Glockshuber R.
    Protein Sci; 1993 May 20; 2(5):717-26. PubMed ID: 8495194
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.