These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


260 related items for PubMed ID: 9865729

  • 1. Androgen receptor expression in androgen-independent prostate cancer is associated with increased expression of androgen-regulated genes.
    Gregory CW, Hamil KG, Kim D, Hall SH, Pretlow TG, Mohler JL, French FS.
    Cancer Res; 1998 Dec 15; 58(24):5718-24. PubMed ID: 9865729
    [Abstract] [Full Text] [Related]

  • 2. Dysregulated expression of androgen-responsive and nonresponsive genes in the androgen-independent prostate cancer xenograft model CWR22-R1.
    Amler LC, Agus DB, LeDuc C, Sapinoso ML, Fox WD, Kern S, Lee D, Wang V, Leysens M, Higgins B, Martin J, Gerald W, Dracopoli N, Cordon-Cardo C, Scher HI, Hampton GM.
    Cancer Res; 2000 Nov 01; 60(21):6134-41. PubMed ID: 11085537
    [Abstract] [Full Text] [Related]

  • 3. Androgen receptor regulation of G1 cyclin and cyclin-dependent kinase function in the CWR22 human prostate cancer xenograft.
    Gregory CW, Johnson RT, Presnell SC, Mohler JL, French FS.
    J Androl; 2001 Nov 01; 22(4):537-48. PubMed ID: 11451350
    [Abstract] [Full Text] [Related]

  • 4. Microarray analysis of prostate cancer progression to reduced androgen dependence: studies in unique models contrasts early and late molecular events.
    Sirotnak FM, She Y, Khokhar NZ, Hayes P, Gerald W, Scher HI.
    Mol Carcinog; 2004 Nov 01; 41(3):150-63. PubMed ID: 15390081
    [Abstract] [Full Text] [Related]

  • 5. Identification of differentially expressed genes associated with androgen-independent growth of prostate cancer.
    Mohler JL, Morris TL, Ford OH, Alvey RF, Sakamoto C, Gregory CW.
    Prostate; 2002 Jun 01; 51(4):247-55. PubMed ID: 11987153
    [Abstract] [Full Text] [Related]

  • 6. Androgen receptor stabilization in recurrent prostate cancer is associated with hypersensitivity to low androgen.
    Gregory CW, Johnson RT, Mohler JL, French FS, Wilson EM.
    Cancer Res; 2001 Apr 01; 61(7):2892-8. PubMed ID: 11306464
    [Abstract] [Full Text] [Related]

  • 7. Characterization of a novel androgen receptor mutation in a relapsed CWR22 prostate cancer xenograft and cell line.
    Tepper CG, Boucher DL, Ryan PE, Ma AH, Xia L, Lee LF, Pretlow TG, Kung HJ.
    Cancer Res; 2002 Nov 15; 62(22):6606-14. PubMed ID: 12438256
    [Abstract] [Full Text] [Related]

  • 8. Androgen receptor up-regulates insulin-like growth factor binding protein-5 (IGFBP-5) expression in a human prostate cancer xenograft.
    Gregory CW, Kim D, Ye P, D'Ercole AJ, Pretlow TG, Mohler JL, French FS.
    Endocrinology; 1999 May 15; 140(5):2372-81. PubMed ID: 10218991
    [Abstract] [Full Text] [Related]

  • 9. Androgen receptor-dependent regulation of Bcl-xL expression: Implication in prostate cancer progression.
    Sun A, Tang J, Hong Y, Song J, Terranova PF, Thrasher JB, Svojanovsky S, Wang HG, Li B.
    Prostate; 2008 Mar 01; 68(4):453-61. PubMed ID: 18196538
    [Abstract] [Full Text] [Related]

  • 10. Regulation of FGF8 expression by the androgen receptor in human prostate cancer.
    Gnanapragasam VJ, Robson CN, Neal DE, Leung HY.
    Oncogene; 2002 Aug 01; 21(33):5069-80. PubMed ID: 12140757
    [Abstract] [Full Text] [Related]

  • 11. Changes in androgen receptor nongenotropic signaling correlate with transition of LNCaP cells to androgen independence.
    Unni E, Sun S, Nan B, McPhaul MJ, Cheskis B, Mancini MA, Marcelli M.
    Cancer Res; 2004 Oct 01; 64(19):7156-68. PubMed ID: 15466214
    [Abstract] [Full Text] [Related]

  • 12. NE-10 neuroendocrine cancer promotes the LNCaP xenograft growth in castrated mice.
    Jin RJ, Wang Y, Masumori N, Ishii K, Tsukamoto T, Shappell SB, Hayward SW, Kasper S, Matusik RJ.
    Cancer Res; 2004 Aug 01; 64(15):5489-95. PubMed ID: 15289359
    [Abstract] [Full Text] [Related]

  • 13. The TRPS1 transcription factor: androgenic regulation in prostate cancer and high expression in breast cancer.
    Chang GT, Jhamai M, van Weerden WM, Jenster G, Brinkmann AO.
    Endocr Relat Cancer; 2004 Dec 01; 11(4):815-22. PubMed ID: 15613454
    [Abstract] [Full Text] [Related]

  • 14. ACTR/AIB1/SRC-3 and androgen receptor control prostate cancer cell proliferation and tumor growth through direct control of cell cycle genes.
    Zou JX, Zhong Z, Shi XB, Tepper CG, deVere White RW, Kung HJ, Chen H.
    Prostate; 2006 Oct 01; 66(14):1474-86. PubMed ID: 16921507
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Interrogating androgen receptor function in recurrent prostate cancer.
    Zhang L, Johnson M, Le KH, Sato M, Ilagan R, Iyer M, Gambhir SS, Wu L, Carey M.
    Cancer Res; 2003 Aug 01; 63(15):4552-60. PubMed ID: 12907631
    [Abstract] [Full Text] [Related]

  • 17. Suppression of androgen receptor expression by dibenzoylmethane as a therapeutic objective in advanced prostate cancer.
    Jackson KM, Frazier MC, Harris WB.
    Anticancer Res; 2007 Aug 01; 27(3B):1483-8. PubMed ID: 17595765
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. In vivo knockdown of the androgen receptor results in growth inhibition and regression of well-established, castration-resistant prostate tumors.
    Snoek R, Cheng H, Margiotti K, Wafa LA, Wong CA, Wong EC, Fazli L, Nelson CC, Gleave ME, Rennie PS.
    Clin Cancer Res; 2009 Jan 01; 15(1):39-47. PubMed ID: 19118031
    [Abstract] [Full Text] [Related]

  • 20. Protein C inhibitor (plasminogen activator inhibitor-3) expression in the CWR22 prostate cancer xenograft.
    Glasscock LN, Réhault SM, Gregory CW, Cooper ST, Jackson TP, Hoffman M, Church FC.
    Exp Mol Pathol; 2005 Aug 01; 79(1):23-32. PubMed ID: 15878512
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 13.