These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


373 related items for PubMed ID: 9876122

  • 1. Molecular dynamics simulations of solvated yeast tRNA(Asp).
    Auffinger P, Louise-May S, Westhof E.
    Biophys J; 1999 Jan; 76(1 Pt 1):50-64. PubMed ID: 9876122
    [Abstract] [Full Text] [Related]

  • 2. RNA hydration: three nanoseconds of multiple molecular dynamics simulations of the solvated tRNA(Asp) anticodon hairpin.
    Auffinger P, Westhof E.
    J Mol Biol; 1997 Jun 13; 269(3):326-41. PubMed ID: 9199403
    [Abstract] [Full Text] [Related]

  • 3. Yeast aspartyl-tRNA synthetase residues interacting with tRNA(Asp) identity bases connectively contribute to tRNA(Asp) binding in the ground and transition-state complex and discriminate against non-cognate tRNAs.
    Eriani G, Gangloff J.
    J Mol Biol; 1999 Aug 27; 291(4):761-73. PubMed ID: 10452887
    [Abstract] [Full Text] [Related]

  • 4. Molecular dynamics of the anticodon domain of yeast tRNA(Phe): codon-anticodon interaction.
    Lahiri A, Nilsson L.
    Biophys J; 2000 Nov 27; 79(5):2276-89. PubMed ID: 11053108
    [Abstract] [Full Text] [Related]

  • 5. Complex ligand-induced conformational changes in tRNA(Asp) revealed by single-nucleotide resolution SHAPE chemistry.
    Wang B, Wilkinson KA, Weeks KM.
    Biochemistry; 2008 Mar 18; 47(11):3454-61. PubMed ID: 18290632
    [Abstract] [Full Text] [Related]

  • 6. Major identity determinants for enzymatic formation of ribothymidine and pseudouridine in the T psi-loop of yeast tRNAs.
    Becker HF, Motorin Y, Sissler M, Florentz C, Grosjean H.
    J Mol Biol; 1997 Dec 12; 274(4):505-18. PubMed ID: 9417931
    [Abstract] [Full Text] [Related]

  • 7. The free yeast aspartyl-tRNA synthetase differs from the tRNA(Asp)-complexed enzyme by structural changes in the catalytic site, hinge region, and anticodon-binding domain.
    Sauter C, Lorber B, Cavarelli J, Moras D, Giegé R.
    J Mol Biol; 2000 Jun 23; 299(5):1313-24. PubMed ID: 10873455
    [Abstract] [Full Text] [Related]

  • 8. Molecular dynamics of the frame-shifting pseudoknot from beet western yellows virus: the role of non-Watson-Crick base-pairing, ordered hydration, cation binding and base mutations on stability and unfolding.
    Csaszar K, Spacková N, Stefl R, Sponer J, Leontis NB.
    J Mol Biol; 2001 Nov 09; 313(5):1073-91. PubMed ID: 11700064
    [Abstract] [Full Text] [Related]

  • 9. Molecular modeling of the three-dimensional architecture of the RNA component of yeast RNase MRP.
    Schmitt ME.
    J Mol Biol; 1999 Oct 01; 292(4):827-36. PubMed ID: 10525408
    [Abstract] [Full Text] [Related]

  • 10. RNA solvation: a molecular dynamics simulation perspective.
    Auffinger P, Westhof E.
    Biopolymers; 1999 Oct 01; 56(4):266-74. PubMed ID: 11754340
    [Abstract] [Full Text] [Related]

  • 11. Mg(2+) binding to tRNA revisited: the nonlinear Poisson-Boltzmann model.
    Misra VK, Draper DE.
    J Mol Biol; 2000 Jun 09; 299(3):813-25. PubMed ID: 10835286
    [Abstract] [Full Text] [Related]

  • 12. Crystal structure of glutamyl-queuosine tRNAAsp synthetase complexed with L-glutamate: structural elements mediating tRNA-independent activation of glutamate and glutamylation of tRNAAsp anticodon.
    Blaise M, Olieric V, Sauter C, Lorber B, Roy B, Karmakar S, Banerjee R, Becker HD, Kern D.
    J Mol Biol; 2008 Sep 19; 381(5):1224-37. PubMed ID: 18602926
    [Abstract] [Full Text] [Related]

  • 13. Solution structure of the 3'-end of brome mosaic virus genomic RNAs. Conformational mimicry with canonical tRNAs.
    Felden B, Florentz C, Giegé R, Westhof E.
    J Mol Biol; 1994 Jan 14; 235(2):508-31. PubMed ID: 8289279
    [Abstract] [Full Text] [Related]

  • 14. Evaluation of uranyl photocleavage as a probe to monitor ion binding and flexibility in RNAs.
    Wittberger D, Berens C, Hammann C, Westhof E, Schroeder R.
    J Mol Biol; 2000 Jul 07; 300(2):339-52. PubMed ID: 10873469
    [Abstract] [Full Text] [Related]

  • 15. Molecular dynamics study of water penetration in staphylococcal nuclease.
    Damjanović A, García-Moreno B, Lattman EE, García AE.
    Proteins; 2005 Aug 15; 60(3):433-49. PubMed ID: 15971206
    [Abstract] [Full Text] [Related]

  • 16. Vibrational dynamics of transfer RNAs: comparison of the free and synthetase-bound forms.
    Bahar I, Jernigan RL.
    J Mol Biol; 1998 Sep 04; 281(5):871-84. PubMed ID: 9719641
    [Abstract] [Full Text] [Related]

  • 17. A distinctive RNA fold: the solution structure of an analogue of the yeast tRNAPhe T Psi C domain.
    Koshlap KM, Guenther R, Sochacka E, Malkiewicz A, Agris PF.
    Biochemistry; 1999 Jul 06; 38(27):8647-56. PubMed ID: 10393540
    [Abstract] [Full Text] [Related]

  • 18. Arginine aminoacylation identity is context-dependent and ensured by alternate recognition sets in the anticodon loop of accepting tRNA transcripts.
    Sissler M, Giegé R, Florentz C.
    EMBO J; 1996 Sep 16; 15(18):5069-76. PubMed ID: 8890180
    [Abstract] [Full Text] [Related]

  • 19. Stability of nucleic acid base pairs in organic solvents: molecular dynamics, molecular dynamics/quenching, and correlated ab initio study.
    Zendlová L, Hobza P, Kabelác M.
    J Phys Chem B; 2007 Mar 15; 111(10):2591-609. PubMed ID: 17302446
    [Abstract] [Full Text] [Related]

  • 20. Structural specificity of nuclease from wheat chloroplasts stroma.
    Gabryszuk J, Keith G, Mońko M, Kuligowska E, Dirheimer G, Szarkowski JW, Przykorska A.
    Nucleic Acids Symp Ser; 1995 Mar 15; (33):115-9. PubMed ID: 8643343
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 19.