These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


299 related items for PubMed ID: 9878411

  • 1. Structure, interaction and electron transfer between cytochrome b5, its E44A and/or E56A mutants and cytochrome c.
    Sun YL, Wang YH, Yan MM, Sun BY, Xie Y, Huang ZX, Jiang SK, Wu HM.
    J Mol Biol; 1999 Jan 08; 285(1):347-59. PubMed ID: 9878411
    [Abstract] [Full Text] [Related]

  • 2. The influence of mutation at Glu44 and Glu56 of cytochrome b5 on the protein's stabilization and interaction between cytochrome c and cytochrome b5.
    Qian W, Sun YL, Wang YH, Zhuang JH, Xie Y, Huang ZX.
    Biochemistry; 1998 Oct 06; 37(40):14137-50. PubMed ID: 9760250
    [Abstract] [Full Text] [Related]

  • 3. The influence of Glu44 and Glu56 of cytochrome b5 on the protein structure and interaction with cytochrome c.
    Sun YL, Xie Y, Wang YH, Xiao GT, Huang ZX.
    Protein Eng; 1996 Jul 06; 9(7):555-8. PubMed ID: 8844826
    [Abstract] [Full Text] [Related]

  • 4. Electrochemical measurement of second-order electron transfer rate constants for the reaction between cytochrome b5 and cytochrome c.
    Seetharaman R, White SP, Rivera M.
    Biochemistry; 1996 Sep 24; 35(38):12455-63. PubMed ID: 8823180
    [Abstract] [Full Text] [Related]

  • 5. 13C NMR spectroscopic and X-ray crystallographic study of the role played by mitochondrial cytochrome b5 heme propionates in the electrostatic binding to cytochrome c.
    Rodríguez-Marañón MJ, Qiu F, Stark RE, White SP, Zhang X, Foundling SI, Rodríguez V, Schilling CL, Bunce RA, Rivera M.
    Biochemistry; 1996 Dec 17; 35(50):16378-90. PubMed ID: 8973214
    [Abstract] [Full Text] [Related]

  • 6. The solution structure of bovine ferricytochrome b5 determined using heteronuclear NMR methods.
    Muskett FW, Kelly GP, Whitford D.
    J Mol Biol; 1996 Apr 26; 258(1):172-89. PubMed ID: 8613986
    [Abstract] [Full Text] [Related]

  • 7. Solution structure of cytochrome b(5) mutant (E44/48/56A/D60A) and its interaction with cytochrome c.
    Wu Y, Wang Y, Qian C, Lu J, Li E, Wang W, Lu J, Xie Y, Wang J, Zhu D, Huang Z, Tang W.
    Eur J Biochem; 2001 Mar 26; 268(6):1620-30. PubMed ID: 11248680
    [Abstract] [Full Text] [Related]

  • 8. Transient kinetics of intracomplex electron transfer in the human cytochrome b5 reductase-cytochrome b5 system: NAD+ modulates protein-protein binding and electron transfer.
    Meyer TE, Shirabe K, Yubisui T, Takeshita M, Bes MT, Cusanovich MA, Tollin G.
    Arch Biochem Biophys; 1995 Apr 20; 318(2):457-64. PubMed ID: 7733677
    [Abstract] [Full Text] [Related]

  • 9. Heterologous expression of an endogenous rat cytochrome b(5)/cytochrome b(5) reductase fusion protein: identification of histidines 62 and 85 as the heme axial ligands.
    Davis CA, Dhawan IK, Johnson MK, Barber MJ.
    Arch Biochem Biophys; 2002 Apr 01; 400(1):63-75. PubMed ID: 11913972
    [Abstract] [Full Text] [Related]

  • 10. Effects of charged amino-acid mutation on the solution structure of cytochrome b(5) and binding between cytochrome b(5) and cytochrome c.
    Qian C, Yao Y, Ye K, Wang J, Tang W, Wang Y, Wang W, Lu J, Xie Y, Huang Z.
    Protein Sci; 2001 Dec 01; 10(12):2451-9. PubMed ID: 11714912
    [Abstract] [Full Text] [Related]

  • 11. The function of tyrosine 74 of cytochrome b5.
    Vergères G, Chen DY, Wu FF, Waskell L.
    Arch Biochem Biophys; 1993 Sep 01; 305(2):231-41. PubMed ID: 8373159
    [Abstract] [Full Text] [Related]

  • 12. Effects of charged amino acid mutations on the bimolecular kinetics of reduction of yeast iso-1-ferricytochrome c by bovine ferrocytochrome b5.
    Northrup SH, Thomasson KA, Miller CM, Barker PD, Eltis LD, Guillemette JG, Inglis SC, Mauk AG.
    Biochemistry; 1993 Jul 06; 32(26):6613-23. PubMed ID: 8392365
    [Abstract] [Full Text] [Related]

  • 13. Mapping the electron transfer interface between cytochrome b5 and cytochrome c.
    Ren Y, Wang WH, Wang YH, Case M, Qian W, McLendon G, Huang ZX.
    Biochemistry; 2004 Mar 30; 43(12):3527-36. PubMed ID: 15035623
    [Abstract] [Full Text] [Related]

  • 14. Kinetics of the reduction of cytochrome b5 with mutations in its membrane-binding domain.
    Wu FF, Vergères G, Waskell L.
    Arch Biochem Biophys; 1994 Feb 01; 308(2):380-6. PubMed ID: 7906503
    [Abstract] [Full Text] [Related]

  • 15. The reduction potential of cytochrome b5 is modulated by its exposed heme edge.
    Rivera M, Seetharaman R, Girdhar D, Wirtz M, Zhang X, Wang X, White S.
    Biochemistry; 1998 Feb 10; 37(6):1485-94. PubMed ID: 9484218
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Cytochrome b5 oxidoreductase: expression and characterization of the original familial ideopathic methemoglobinemia mutations E255- and G291D.
    Davis CA, Barber MJ.
    Arch Biochem Biophys; 2004 May 15; 425(2):123-32. PubMed ID: 15111120
    [Abstract] [Full Text] [Related]

  • 18. Engineering out motion: introduction of a de novo disulfide bond and a salt bridge designed to close a dynamic cleft on the surface of cytochrome b5.
    Storch EM, Daggett V, Atkins WM.
    Biochemistry; 1999 Apr 20; 38(16):5054-64. PubMed ID: 10213608
    [Abstract] [Full Text] [Related]

  • 19. Characterization of a site-directed mutant of cytochrome b5 designed to alter axial imidazole ligand plane orientation.
    Sarma S, Dangi B, Yan C, DiGate RJ, Banville DL, Guiles RD.
    Biochemistry; 1997 May 13; 36(19):5645-57. PubMed ID: 9153404
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 15.