These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


155 related items for PubMed ID: 9880502

  • 1. Conversion of tyrosine phenol-lyase to dicarboxylic amino acid beta-lyase, an enzyme not found in nature.
    Mouratou B, Kasper P, Gehring H, Christen P.
    J Biol Chem; 1999 Jan 15; 274(3):1320-5. PubMed ID: 9880502
    [Abstract] [Full Text] [Related]

  • 2. Citrobacter freundii tyrosine phenol-lyase: the role of asparagine 185 in modulating enzyme function through stabilization of a quinonoid intermediate.
    Barbolina MV, Phillips RS, Gollnick PD, Faleev NG, Demidkina TV.
    Protein Eng; 2000 Mar 15; 13(3):207-15. PubMed ID: 10775663
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Site-directed mutagenesis of tyrosine-71 to phenylalanine in Citrobacter freundii tyrosine phenol-lyase: evidence for dual roles of tyrosine-71 as a general acid catalyst in the reaction mechanism and in cofactor binding.
    Chen HY, Demidkina TV, Phillips RS.
    Biochemistry; 1995 Sep 26; 34(38):12276-83. PubMed ID: 7547970
    [Abstract] [Full Text] [Related]

  • 5. Crystal Structures of Wild-Type and F448A Mutant Citrobacter freundii Tyrosine Phenol-Lyase Complexed with a Substrate and Inhibitors: Implications for the Reaction Mechanism.
    Phillips RS, Craig S.
    Biochemistry; 2018 Oct 30; 57(43):6166-6179. PubMed ID: 30260636
    [Abstract] [Full Text] [Related]

  • 6. Escherichia coli aromatic amino acid aminotransferase: characterization and comparison with aspartate aminotransferase.
    Hayashi H, Inoue K, Nagata T, Kuramitsu S, Kagamiyama H.
    Biochemistry; 1993 Nov 16; 32(45):12229-39. PubMed ID: 8218300
    [Abstract] [Full Text] [Related]

  • 7. Structure and mechanism of a cysteine sulfinate desulfinase engineered on the aspartate aminotransferase scaffold.
    Fernandez FJ, de Vries D, Peña-Soler E, Coll M, Christen P, Gehring H, Vega MC.
    Biochim Biophys Acta; 2012 Feb 16; 1824(2):339-49. PubMed ID: 22138634
    [Abstract] [Full Text] [Related]

  • 8. The role of substrate strain in the mechanism of the carbon-carbon lyases.
    Phillips RS, Demidkina TV, Faleev NG.
    Bioorg Chem; 2014 Dec 16; 57():198-205. PubMed ID: 25035301
    [Abstract] [Full Text] [Related]

  • 9. Structure and mechanism of tryptophan indole-lyase and tyrosine phenol-lyase.
    Phillips RS, Demidkina TV, Faleev NG.
    Biochim Biophys Acta; 2003 Apr 11; 1647(1-2):167-72. PubMed ID: 12686128
    [Abstract] [Full Text] [Related]

  • 10. The crystal structure of Citrobacter freundii tyrosine phenol-lyase complexed with 3-(4'-hydroxyphenyl)propionic acid, together with site-directed mutagenesis and kinetic analysis, demonstrates that arginine 381 is required for substrate specificity.
    Sundararaju B, Antson AA, Phillips RS, Demidkina TV, Barbolina MV, Gollnick P, Dodson GG, Wilson KS.
    Biochemistry; 1997 May 27; 36(21):6502-10. PubMed ID: 9174368
    [Abstract] [Full Text] [Related]

  • 11. Biochemical characterization of a novel tyrosine phenol-lyase from Fusobacterium nucleatum for highly efficient biosynthesis of l-DOPA.
    Zheng RC, Tang XL, Suo H, Feng LL, Liu X, Yang J, Zheng YG.
    Enzyme Microb Technol; 2018 May 27; 112():88-93. PubMed ID: 29499786
    [Abstract] [Full Text] [Related]

  • 12. The novel substrate recognition mechanism utilized by aspartate aminotransferase of the extreme thermophile Thermus thermophilus HB8.
    Nobe Y, Kawaguchi S, Ura H, Nakai T, Hirotsu K, Kato R, Kuramitsu S.
    J Biol Chem; 1998 Nov 06; 273(45):29554-64. PubMed ID: 9792664
    [Abstract] [Full Text] [Related]

  • 13. Aminoacrylate intermediates in the reaction of Citrobacter freundii tyrosine phenol-lyase.
    Phillips RS, Chen HY, Faleev NG.
    Biochemistry; 2006 Aug 08; 45(31):9575-83. PubMed ID: 16878992
    [Abstract] [Full Text] [Related]

  • 14. Active-site Arg --> Lys substitutions alter reaction and substrate specificity of aspartate aminotransferase.
    Vacca RA, Giannattasio S, Graber R, Sandmeier E, Marra E, Christen P.
    J Biol Chem; 1997 Aug 29; 272(35):21932-7. PubMed ID: 9268327
    [Abstract] [Full Text] [Related]

  • 15. Site-directed mutagenesis of His343-->Ala in Citrobacter freundii tyrosine phenol-lyase. Effects on the kinetic mechanism and rate-determining step.
    Chen H, Gollnick P, Phillips RS.
    Eur J Biochem; 1995 Apr 15; 229(2):540-9. PubMed ID: 7744078
    [Abstract] [Full Text] [Related]

  • 16. Substitution of apolar residues in the active site of aspartate aminotransferase by histidine. Effects on reaction and substrate specificity.
    Vacca RA, Christen P, Malashkevich VN, Jansonius JN, Sandmeier E.
    Eur J Biochem; 1995 Jan 15; 227(1-2):481-7. PubMed ID: 7851426
    [Abstract] [Full Text] [Related]

  • 17. Binding of C5-dicarboxylic substrate to aspartate aminotransferase: implications for the conformational change at the transaldimination step.
    Islam MM, Goto M, Miyahara I, Ikushiro H, Hirotsu K, Hayashi H.
    Biochemistry; 2005 Jun 14; 44(23):8218-29. PubMed ID: 15938611
    [Abstract] [Full Text] [Related]

  • 18. M379A Mutant Tyrosine Phenol-lyase from Citrobacter freundii Has Altered Conformational Dynamics.
    Phillips RS, Jones B, Nash S.
    Chembiochem; 2022 Jul 05; 23(13):e202200028. PubMed ID: 35577764
    [Abstract] [Full Text] [Related]

  • 19. The role of glutamic acid-69 in the activation of Citrobacter freundii tyrosine phenol-lyase by monovalent cations.
    Sundararaju B, Chen H, Shilcutt S, Phillips RS.
    Biochemistry; 2000 Jul 25; 39(29):8546-55. PubMed ID: 10913261
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.