These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


128 related items for PubMed ID: 9888300

  • 1. Patterned distribution of immunoreactive astroglial processes in the striate (V1) cortex of New World monkeys.
    Colombo JA, Schleicher A, Zilles K.
    Glia; 1999 Jan; 25(1):85-92. PubMed ID: 9888300
    [Abstract] [Full Text] [Related]

  • 2. Interlaminar astroglial processes in the cerebral cortex of non human primates: response to injury.
    Colombo JA, Yáñez A, Lipina SJ.
    J Hirnforsch; 1997 Jan; 38(4):503-12. PubMed ID: 9476215
    [Abstract] [Full Text] [Related]

  • 3. Disruption of patterns of immunoreactive glial fibrillary acidic protein processes in the Cebus Apella striate cortex following loss of visual input.
    Colombo JA, Yáñez A, Lipina S.
    J Hirnforsch; 1999 Jan; 39(4):449-53. PubMed ID: 10841442
    [Abstract] [Full Text] [Related]

  • 4. Long, interlaminar astroglial cell processes in the cortex of adult monkeys.
    Colombo JA, Yáñez A, Puissant V, Lipina S.
    J Neurosci Res; 1995 Mar 01; 40(4):551-6. PubMed ID: 7616615
    [Abstract] [Full Text] [Related]

  • 5. Immunocytochemical and electron microscope observations on astroglial interlaminar processes in the primate neocortex.
    Colombo JA, Gayol S, Yañez A, Marco P.
    J Neurosci Res; 1997 May 15; 48(4):352-7. PubMed ID: 9169861
    [Abstract] [Full Text] [Related]

  • 6. Interlaminar astroglia of the cerebral cortex: a marker of the primate brain.
    Colombo JA, Reisin HD.
    Brain Res; 2004 Apr 23; 1006(1):126-31. PubMed ID: 15047031
    [Abstract] [Full Text] [Related]

  • 7. Anatomical demonstration of ocular segregation in the retinogeniculocortical pathway of the New World capuchin monkey (Cebus apella).
    Hess DT, Edwards MA.
    J Comp Neurol; 1987 Oct 15; 264(3):409-20. PubMed ID: 2824572
    [Abstract] [Full Text] [Related]

  • 8. Organization of cytochrome oxidase staining in the visual cortex of nocturnal primates (Galago crassicaudatus and Galago senegalensis): I. Adult patterns.
    Condo GJ, Casagrande VA.
    J Comp Neurol; 1990 Mar 22; 293(4):632-45. PubMed ID: 2158503
    [Abstract] [Full Text] [Related]

  • 9. Postnatal development of interlaminar astroglial processes in the cerebral cortex of primates.
    Colombo JA, Lipina S, Yáñez A, Puissant V.
    Int J Dev Neurosci; 1997 Nov 22; 15(7):823-33. PubMed ID: 9580494
    [Abstract] [Full Text] [Related]

  • 10. "Rodent-like" and "primate-like" types of astroglial architecture in the adult cerebral cortex of mammals: a comparative study.
    Colombo JA, Fuchs E, Härtig W, Marotte LR, Puissant V.
    Anat Embryol (Berl); 2000 Feb 22; 201(2):111-20. PubMed ID: 10672363
    [Abstract] [Full Text] [Related]

  • 11. Interlaminar astroglial processes in the cerebral cortex of adult monkeys but not of adult rats.
    Colombo JA.
    Acta Anat (Basel); 1996 Feb 22; 155(1):57-62. PubMed ID: 8811116
    [Abstract] [Full Text] [Related]

  • 12. Astrocyte-neuron vulnerability to prenatal stress in the adult rat brain.
    Barros VG, Duhalde-Vega M, Caltana L, Brusco A, Antonelli MC.
    J Neurosci Res; 2006 Apr 22; 83(5):787-800. PubMed ID: 16493669
    [Abstract] [Full Text] [Related]

  • 13. Morphology and laminar distribution of neuropeptide Y immunoreactive neurons in the human striate cortex.
    Berman NE, Fredrickson E.
    Synapse; 1992 May 22; 11(1):20-7. PubMed ID: 1318583
    [Abstract] [Full Text] [Related]

  • 14. Cortical radial glial cells in human fetuses: depth-correlated transformation into astrocytes.
    deAzevedo LC, Fallet C, Moura-Neto V, Daumas-Duport C, Hedin-Pereira C, Lent R.
    J Neurobiol; 2003 Jun 22; 55(3):288-98. PubMed ID: 12717699
    [Abstract] [Full Text] [Related]

  • 15. Astroglial interlaminar processes in the cerebral cortex of prosimians and Old World monkeys.
    Colombo JA, Härtig W, Lipina S, Bons N.
    Anat Embryol (Berl); 1998 May 22; 197(5):369-76. PubMed ID: 9623670
    [Abstract] [Full Text] [Related]

  • 16. Remote astroglial response associated with synaptic degeneration results in a net increase of perisynaptic glial fibrillary acidic protein.
    Hajós F, Jancsik V, Sótonyi P.
    Acta Biol Hung; 1996 May 22; 47(1-4):173-9. PubMed ID: 9123989
    [Abstract] [Full Text] [Related]

  • 17. Interlaminar astroglial processes in the cerebral cortex of great apes.
    Colombo JA, Sherwood CC, Hof PR.
    Anat Embryol (Berl); 2004 Jun 22; 208(3):215-8. PubMed ID: 15221474
    [Abstract] [Full Text] [Related]

  • 18. Postnatal development of GFAP in mouse visual cortex is not affected by light deprivation.
    Corvetti L, Capsoni S, Cattaneo A, Domenici L.
    Glia; 2003 Mar 22; 41(4):404-14. PubMed ID: 12555207
    [Abstract] [Full Text] [Related]

  • 19. Juvenile separation stress induces rapid region- and layer-specific changes in S100ss- and glial fibrillary acidic protein-immunoreactivity in astrocytes of the rodent medial prefrontal cortex.
    Braun K, Antemano R, Helmeke C, Büchner M, Poeggel G.
    Neuroscience; 2009 May 19; 160(3):629-38. PubMed ID: 19285122
    [Abstract] [Full Text] [Related]

  • 20. Development of astroglial elements in the suprachiasmatic nucleus of the rat: with special reference to the involvement of the optic nerve.
    Munekawa K, Tamada Y, Iijima N, Hayashi S, Ishihara A, Inoue K, Tanaka M, Ibata Y.
    Exp Neurol; 2000 Nov 19; 166(1):44-51. PubMed ID: 11031082
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.